
IBM
®

DB2 Universal Database
™

Federated Systems Guide

Version 8

GC27-1224-00

���

IBM
®

DB2 Universal Database
™

Federated Systems Guide

Version 8

GC27-1224-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998 - 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

Figures ix

Tables xi

About this book xiii
Who should read this book. xiv
Conventions and terminology used in this
book xiv
Prerequisite and related information xv
How to send your comments xv
What’s new about federated systems in DB2
Version 8?. xv

Part 1. Introduction to federated
systems and concepts 1

Chapter 1. Overview of a federated system 3
Federated systems 3
Data sources 5
The federated database. 7
The SQL Compiler and the query optimizer . . 8
Compensation. 9
Pass-through sessions 11
Wrappers and wrapper modules 12
Server definitions and server options. . . . 14
User mappings and user options 15
Nicknames and data source objects 16
Column options. 17
Data type mappings 18
Function mappings and function templates . 20
Function mappings options 22
Index specifications 22
DB2 Relational Connect 23
About the other IBM Connect products . . . 24

DB2 Relational Connect and the other
Connect products 24
Using Life Sciences Data Connect with
DB2 Relational Connect 26

Overview of the tasks to set up a federated
system 26
How you interact with a federated system . . 29

DB2 command line processor (CLP) . . . 29
DB2 Command Center 29
DB2 Control Center 30

Application programs 30

Chapter 2. Business Solutions with
federated systems 31
Leverage the federated functionality to solve
your business needs 31
Replication with a federated system 31
Spatial analysis with a federated system . . 32

Retail site selection. 33
Insurance risk assessment 33
Targeted marketing campaigns 33
Using DB2 Spatial Extender with a
federated system 34

Data warehousing with a federated system . 34

Part 2. Planning, setting up, and
configuring a federated system . . 37

Chapter 3. Setting up the federated server
and database 39
Fast track to setting up your server and
database 39
Setting up the server to access DB2 family
data sources 44
Setting up the server to access Informix data
sources. 47
Setting up the server to access Oracle data
sources. 50
Setting up the server to access Sybase data
sources. 54
Setting up the server to access Microsoft SQL
Server data sources 57
Setting up the server to access ODBC data
sources. 62
Setting up the server to access OLE DB data
sources. 65
Checking the federated server setup 67
Checking the federated server setup—details 68

Checking the data source environment
variables 68
Confirming the link between DB2 and the
data source client libraries (UNIX) . . . 75
Checking the wrapper library file
permissions (UNIX) 80

© Copyright IBM Corp. 1998 - 2002 iii

Checking the FEDERATED parameter . . 81
Creating the federated database 82
Obtaining updates for DB2 and Relational
Connect 83

Chapter 4. Overview of configuring access
to data sources 85
Fast track to configuring your data sources . 85
Prepare the federated database 86
Create the wrapper 88
Supply the server definition. 91

Additional server options 93
Create the user mappings and test the
connection to the data source 94
Create nicknames for each data source object 96

Including column options when you create
a nickname 97
Creating a nickname on a nickname . . . 98

Optional configuration steps 98
About optional configuration steps 99

Specify data source object indexes. . . . 99
Define alternative data type mappings to
the federated database 101
Define alternative function mappings to
the federated database 103

Troubleshoot the data source configuration 105

Chapter 5. Configuring access to DB2
family data sources 107
Adding DB2 family data sources to a
federated server 107

Step 1: Catalog a node entry in the
federated node directory 108
Step 2: Catalog the remote database in the
federated system database directory . . 109
Step 3: Create the wrapper 109
Step 4: Create the server definition . . . 110
Step 5: Create the user mappings . . . 112
Step 6: Test the connection to the data
source server 112
Step 7: Create the nicknames for the
tables and views 113

Tuning and troubleshooting the
configuration to DB2 family data sources . . 115

Improving performance by setting the
DB2_DJ_COMM environment variable
(UNIX) 115

Chapter 6. Configuring access to Informix
data sources 117

Adding Informix data sources to a federated
server 117

Step 1: Set up and test the client
configuration file 118
Step 2: Create the wrapper 119
Step 3: Create the server definition . . . 120
Step 4: Create the user mappings . . . 122
Step 5: Test the connection to the Informix
server 123
Step 6: Create the nicknames for tables,
views, and synonyms 123

Tuning and troubleshooting the
configuration to Informix 125

Improving performance by setting the
FOLD_ID and FOLD_PW server options . 125
Improving performance by setting the
DB2_DJ_COMM environment variable
(UNIX) 126

Chapter 7. Configuring access to Oracle
data sources 127
Adding Oracle data sources to a federated
server 127

Step 1: Set up and test a client
configuration file 128
Step 2: Create the wrapper 129
Step 3: Create the server definition . . . 130
Step 4: Create the user mappings . . . 132
Step 5: Test the connection to the Oracle
server 133
Step 6: Create the nicknames for tables
and views 133

Tuning and troubleshooting the
configuration to Oracle data sources . . . 135

Improving performance by setting the
DB2_DJ_COMM environment variable
(UNIX) 135
Connectivity problems 135

Chapter 8. Configuring access to Sybase
data sources 137
Adding Sybase data sources to a federated
server 137

Step 1: Set up and test the client
configuration file 138
Step 2: Create the wrapper 139
Step 3: Create the server definition . . . 140
Step 4: Create the user mappings . . . 142
Step 5: Test the connection to the Sybase
server 143

iv DB2 Federated Systems Guide

Step 6: Create the nicknames for tables
and views 143

Tuning and troubleshooting the
configuration to Sybase data sources . . . 145

Improving performance by setting the
DB2_DJ_COMM environment variable
(UNIX) 145
Using CTLIB instead of DBLIB 146
Resolving the sp_helpindex error . . . 146

Chapter 9. Configuring access to
Microsoft SQL Server data sources . . . 147
Adding Microsoft SQL Server data sources
to a federated server 147

Step 1: Prepare the federated server and
database 148
Step 2: Create the wrapper 149
Step 3: Create the server definition . . . 150
Step 4: Create the user mappings . . . 152
Step 5: Test the connection to the
Microsoft SQL Server remote server. . . 153
Step 6: Create the nicknames for tables
and views 153

Tuning and troubleshooting the
configuration to Microsoft SQL Server data
sources 155

Improving performance by setting the
DB2_DJ_COMM environment variable
(UNIX) 155
Obtaining ODBC traces 156

Chapter 10. Configuring access to ODBC
data sources 159
Adding ODBC sources to a federated server 159

Step 1: Prepare the federated server and
database 160
Step 2: Create the wrapper 161
Step 3: Create the server definition . . . 161
Step 4: Create the user mappings . . . 162
Step 5: Test the connection to the ODBC
data source 163
Step 6: Create the nicknames for tables
and views 163

Tuning and troubleshooting the
configuration to ODBC data sources . . . 165

Improving performance by setting the
DB2_DJ_COMM environment variable . . 165
Obtaining ODBC traces 166

Chapter 11. Configuring access to OLE
DB data sources 167
Adding OLE DB data sources to a federated
server 167

Step 1: Create the wrapper 168
Step 2: Create the server definition . . . 168
Step 3: Create the user mappings . . . 169

Registering a user-defined OLE DB external
table function 170

Part 3. Using, administering, and
programming the federated
system 173

Chapter 12. Working with the federated
system 175
Working with nicknames 175
Working with nicknames—details 176

The SQL statements you can use with
nicknames 176
Accessing new data source objects . . . 180
Accessing data sources using PASSTHRU 181
Accessing heterogeneous data through
federated views 182

Transaction support in a federated system 183
Selecting data in a federated system . . . 188
Modifying data in a federated system . . . 191

Inserting data into data source objects 191
Updating data in data source objects . . 192
Deleting data from data source objects 193

Chapter 13. Modifying the federated
system 195
Modifying wrappers 195
Modifying wrappers-details 196

Altering a wrapper 196
Dropping a wrapper 196

Modifying nicknames 198
Modifying nicknames-details 199

Altering a nickname 199
Dropping a nickname 202

Modifying server definitions 203
Modifying server definitions-details. . . . 204

Altering server definitions 204
Dropping a server definition 207

Modifying default data type mappings. . . 208
Modifying default data type
mappings-details 211

Contents v

Change a type mapping for all data
source objects located on a specific server . 211
Change a type mapping for a specific
data source object 212
Change a type mapping for a specific
data source type 214
Change a type mapping for a specific
data source type and version 215

Creating index specifications for data source
objects 216
Creating index specifications for data source
objects-details 218

Creating index specifications on tables
that acquire new indexes 218
Creating index specifications on views 219
Creating index specifications on Informix
synonyms 221

Creating and modifying function mappings 223
Creating and modifying remote tables using
transparent DDL 226

Creating new remote tables using
transparent DDL 228
Altering remote tables that were created
transparent DDL 229
Dropping remote tables that were created
transparent DDL 229

Chapter 14. Tuning and performance
issues with a federated system 231
Tuning query processing 231
Pushdown analysis 233
Pushdown analysis-details 235

Server characteristics affecting pushdown
opportunities 235
Nickname characteristics affecting
pushdown opportunities 239
Query characteristics affecting pushdown
opportunities 241

Pushdown analysis decisions 241
Analyzing where a query is evaluated 241
Understanding access plan evalutation
decisions. 242
Data source upgrades and customization 245

Global optimization 246
Global optimization-details 247

Server characteristics affecting global
optimization 247
Nickname characteristics affecting global
optimization 249

Global optimization decisions 251

Analyzing global optimization 252
Understanding access plan optimization
decisions. 253

Chapter 15. Application programming
issues for federated systems 255
How client applications interact with data
sources 255
Working with nicknames in your
applications 256

Referencing data source objects by
nicknames in SQL statements 256
Performing operations on data source
objects 257
Cataloging information about data source
objects 258
Invoking stored procedure nicknames . . 260
Defining column options on nicknames 260

Creating and using federated views. . . . 261
Using isolation levels to maintain data
integrity 263
Overriding the default data type mappings 264
Federated LOB support 265
Federated LOB support—details 266

How applications can use LOB locators 266
Restrictions on LOBs. 267
Mappings between LOB and non-LOB
data types 267

Using distributed requests to query data
sources 268
Using server options to optimize distributed
requests 270
Invoking user-defined functions in
applications 271
Invoking user-defined functions in
applications—details 271

Enabling the federated database to access
functions at data source. 271
Specifying function overhead through
mapping options 273
Specifying function names in a function
mapping 275
Discontinuing function mappings . . . 275

Enabling the federated database to recognize
data source user-defined data types (UDTs) . 276
Using pass-though sessions within
applications 277

Using pass-through to query data sources
directly 277

vi DB2 Federated Systems Guide

Pass-though considerations and
restrictions 278
Using pass-through with Oracle data
sources 278

Appendix A. Views in the global catalog
table containing federated information . . 281

Appendix B. Wrapper options for
federated systems 285

Appendix C. Server options for federated
systems 287

Appendix D. User options for federated
systems 297

Appendix E. Column options for
federated systems 299

Appendix F. Function mapping options
for federated systems 301

Appendix G. Valid server types in SQL
statements 303
CTLIB wrapper 303
DBLIB wrapper 303
DJXMSSQL3 wrapper 303
DRDA wrapper 303
Informix wrapper 305
MSSQLODBC3 wrapper 305
NET8 wrapper 305
ODBC wrapper 305
OLE DB wrapper 305
SQLNET wrapper. 306

Appendix H. Default forward data type
mappings 307

DB2 for z/OS and OS/390 data sources . . 308
DB2 for iSeries data sources 309
DB2 Server for VM and VSE data sources 310
DB2 for UNIX and Windows data sources 311
Informix data sources 312
Oracle SQLNET data sources 313
Oracle NET8 data sources 314
Microsoft SQL Server data sources 316
ODBC data sources 319
Sybase data sources 320

Appendix I. Default reverse data type
mappings 323
DB2 for z/OS and OS/390 data sources . . 324
DB2 for iSeries data sources 325
DB2 Server for VM and VSE data sources 326
DB2 for UNIX and Windows data sources 327
Informix data sources 328
Oracle SQLNET data sources 329
Oracle NET8 data sources 330
Microsoft SQL Server data sources 332
Sybase data sources 332

Appendix J. Quick reference - useful
Internet Web sites 335

Glossary 337
Glossary terms for federated systems . . . 337

Notices 341
Trademarks 344

Index 347

Contacting IBM 353
Product information 353

Contents vii

viii DB2 Federated Systems Guide

Figures

1. The components of a federated system
and the supported data sources 4

2. Flowchart of tasks to set up and
configure a federated server and
database 28

3. Create one wrapper for each data
source, a wrapper for DB2 and a
wrapper for Sybase 90

4. Sample federated system with DB2 and
Oracle data sources 189

5. Tables and nicknames for sample
queries 190

6. SQL Compiler query analysis flowchart 232

© Copyright IBM Corp. 1998 - 2002 ix

x DB2 Federated Systems Guide

Tables

1. Supported data source versions and
access methods. 6

2. Default wrapper names for each data
source. 12

3. Data sources and the objects that you
can create a nickname for. 16

4. DB2 software required to setup a
federated server. 40

5. Locating information on software disk
space requirements 42

6. The DB2 UDB editions and the DB2
family data sources they can access. . . 44

7. Valid data source environment variables. 68
8. Oracle ORA_NLS directory name, by

version.. 71
9. Informix wrapper library locations and

file names 76
10. Microsoft SQL Server client library

locations and file names 77
11. Oracle client library locations and file

names 77
12. Sybase client library locations and file

names 78
13. Link-edit error message file names by

data source 78
14. Link scripts by data source 79
15. Default path for data source wrapper

libraries. 81
16. The recommended interface and

configuration steps 85
17. DB2 wrapper library names 110
18. Commands to set the DB2_DJ_COMM

variable for DB2 data sources 115
19. Informix wrapper library names 119
20. Commands to set the DB2_DJ_COMM

variable for Informix data sources . . 126
21. Default path and name of the Oracle

client configuration file. 128
22. Oracle wrappers by client version and

operating system 129
23. Oracle wrapper library names 130
24. Oracle wrapper library names 135
25. Default path and name of the Sybase

client configuration file. 138
26. Sybase wrapper library names 140

27. Locating the node name in the Sybase
interfaces file. 141

28. Sybase wrapper library names 146
29. Supported ODBC drivers and the

default wrapper names 149
30. Microsoft SQL Server wrapper library

names 150
31. Locating the node name in the .odbc.ini

file. 151
32. Microsoft SQL Server wrapper library

names 155
33. Common SQL statements that support

the use of nicknames. 177
34. Federated update matrix 184
35. Federated compatability 184
36. Comparable isolation levels between

the federated server and supported
data sources. 263

37. Read and write support for LOBs 266
38. Function mapping options and their

settings 274
39. Catalog views typically used with a

federated system 281
40. Federated updatable global catalog

views 282
41. Wrapper options and their settings 285
42. Server options and their settings 287
43. User Options and their settings 297
44. Column options and their settings 299
45. Function mapping options and their

settings 301
46. IBM DB2 for UNIX and Windows 303
47. IBM DB2 for iSeries (and AS/400) 304
48. IBM DB2 for z/OS and OS/390 304
49. IBM DB2 Server for VM and VSE 304
50. DB2 for z/OS and OS/390 forward

default data type mappings (Not all
columns shown) 308

51. DB2 for iSeries forward default data
type mappings (Not all columns
shown) 309

52. DB2 Server for VM and VSE forward
default data type mappings (Not all
columns shown) 310

© Copyright IBM Corp. 1998 - 2002 xi

53. DB2 for UNIX and Windows forward
default data type mappings (Not all
columns shown) 311

54. Informix forward default data type
mappings (Not all columns shown) . . 312

55. Oracle SQLNET forward default data
type mappings (Not all columns
shown) 313

56. Oracle NET8 forward default data type
mappings (Not all columns shown) . . 314

57. Microsoft SQL Server forward default
data type mappings (Not all columns
shown) 316

58. ODBC forward default data type
mappings (Not all columns shown) . . 319

59. Sybase CTLIB forward default data
type mappings (Not all columns
shown) 320

60. DB2 for z/OS and OS/390 reverse
default data type mappings (Not all
columns shown) 324

61. DB2 for iSeries reverse default data
type mappings (Not all columns
shown) 325

62. DB2 Server for VM and VSE reverse
default data type mappings (Not all
columns shown) 326

63. DB2 for UNIX and Windows reverse
default data type mappings (Not all
columns shown) 327

64. Informix reverse default data type
mappings (Not all columns shown) . . 328

65. Oracle SQLNET reverse default data
type mappings (Not all columns
shown) 329

66. Oracle NET8 reverse default data type
mappings (Not all columns shown) . . 331

67. Microsoft SQL Server reverse default
data type mappings (Not all columns
shown) 332

68. Sybase CTLIB reverse default data type
mappings (Not all columns shown) . . 333

69. Quick reference table of useful Internet
Web sites 335

xii DB2 Federated Systems Guide

About this book

This book describes how to plan, configure, and administer a federated
system. It includes information about accessing heterogeneous data using DB2
Universal Database for UNIX and Windows, Version 8. Depending on the data
sources that you want to access, you might need to install and configure DB2
Relational Connect or DB2 Life Sciences Data Connect.

This book contains:
v An introduction to federated systems, and the concepts and terminology

used when discussing DB2 federated systems.
v Hardware, software, and other requirements for setting up a federated

system.
v General information about migrating your federated system from DB2

DataJoiner 2.1.1 and DB2 Universal Database for UNIX and Windows,
Version 7 to DB2 Version 8. Detailed information about migrating from DB2
DataJoiner 2.1.1 is in the DB2 Universal Database for UNIX and Windows
Version 8 release notes.

v Instructions for setting up a DB2 server and database to perform as the
federated server and database.

v Steps to configure the federated database to access data sources. This book
describes how to configure access to the following data sources:
– DB2 for UNIX and Windows
– DB2 for z/OS and OS/390
– DB2 for iSeries
– DB2 Server for VM and VSE
– Informix
– Oracle
– Sybase
– Microsoft SQL Server
– ODBC
– OLE DB

Note: To configure access to BLAST, Documentum, Microsoft Excel,
table-structured files, and XML data sources, see the DB2 Life Sciences Data
Connect: Planning, Installation, and Configuration Guide.

v Suggestions for tuning your federated system for optimum performance.

© Copyright IBM Corp. 1998 - 2002 xiii

v Issues you need to consider when developing applications for federated
systems.

v A glossary of federated terms.

Who should read this book

This book is intended for system administrators, database administrators,
security administrators, and system operators who need to set up, configure,
maintain, or use a DB2 federated system. Use this book to implement a
federated system to access data from relational and nonrelational data sources.
This book can also be used by programmers and other users who require an
understanding of the configuration, administration, and use of a federated
system.

This book assumes that you are familiar with DB2. You should be familiar
with standard database terminology, and have experience with database
design and database administration. This book assumes that you are familiar
with your own applications and the data sources that you want access.

Conventions and terminology used in this book

Federated terminology:

This book defines the terms that are used when discussing federated systems
in the glossary.

DB2 Commands:

This book assumes that DB2 commands are entered in the DB2 Command
Line Processor (CLP), unless otherwise specified.

Highlighting Conventions:

This book uses these highlighting conventions:

Boldface type

Indicates commands and graphical user interface controls (such as
names of fields, names of push buttons, and menu choices). Boldface
type indicates keywords in SQL examples. Boldface type is used to
designate notes, restrictions, prerequisites, and recommendations.

Monospace type

Indicates text that you type, file names, and code examples.

xiv DB2 Federated Systems Guide

Italic type

Indicates SQL or command variables that you replace with an
appropriate value. Italic type is used to emphasize words, including
new term, and indicates document titles.

UPPERCASE TYPE

Indicates the names of DB2 commands and SQL statements, and their
keywords. Uppercase is also used for data type names and acronyms.

Prerequisite and related information

If you are migrating your federated system from DB2 for UNIX and Windows
Version 7 or DataJoiner Verison 2.1.1 to DB2 for UNIX and Windows Version
8, read the DB2 Quick Beginnings for Servers book. It contains information
about migrating your instances and databases. Detailed information about
migrating from DB2 DataJoiner 2.1.1 is in the DB2 Universal Database for
UNIX and Windows release notes.

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 documentation. You
can use any of the following methods to provide comments:
v Send your comments from the Web. You can access the IBM Data

Management online readers’ comment form at:

http://www.ibm.com/software/data/rcf
v Send your comments by e-mail to:

comments@vnet.ibm.com

Be sure to include the name of the product, the version number of the
product, and the name and part number of the book (if applicable). If you
are commenting on specific text, please include the location of the text (for
example, a chapter and section title, a table number, a page number, or a
help topic title).

What’s new about federated systems in DB2 Version 8?

The federated changes since DB2 Version 7.1 are significant. DB2 Version 8
provides additional support for data sources.

Expanded support:

About this book xv

DB2 Version 8 federated systems support additional data sources and
operating systems:
v You can access Informix data sources with DB2 Enterprise Server Edition,

DB2 Workgroup Server Edition, or DB2 Personal Edition.
v Through DB2 Relational Connect, you can access Microsoft SQL Server,

Sybase, and ODBC data sources.
v A new product, Life Sciences Data Connect, enables you to access BLAST

search algorithms, Documentum data files, Microsoft Excel spreadsheets,
table-structured files, and XML tagged files.

v DB2 servers that useLinux, HP-UX, and Windows 2000 operating systems
can now be federated servers.

Write capability:

A significant enhancement to federated functionality in DB2 Version 8, is the
ability to write to a data source. You can now issue INSERT, UPDATE, and
DELETE statements on nicknames. This enables DB2 replication to support
replication to and from non-DB2 data sources. In addition, you can create
remote tables on relational data sources. This feature is sometimes referred to
as transparent DDL.

New federated DB2 Control Center support:

Use the DB2 Control Center to quickly setup a federated system. You can
create the wrappers, supply the server definitions, idenify user mappings, and
create nicknames for the data source objects.

Additionally, the DB2 Control Center is the easiest way to create remote tables
using transparent DDL. Through the DB2 Cotnrol Center, you can:
v Create a remote table.
v Define a primary key for the new remote table.
v Add a new column to the remote table by selecting from a list of

predefined columns or by specifying the attributes for a new column.
v Alter the attributes of existing columns, such as the column name, data

type, and length.
v Alter the remote table primary keys.
v Drop the remote table.

Changes to the SYSCAT views:

As noted in the DB2 Universal Database for UNIX and Windows Version 6
and Version 7 SQL Reference manuals, the DB2 Version 8 SYSCAT views are
now read-only.

xvi DB2 Federated Systems Guide

Materialized query table support:

A materialized query table is a summary table that is created based on the
result set of a query. Unlike a view, a materialized query table stores the
actual data from the result set. You can create a materialized query table on a
nickname to provide better performance when accessing data sources.
Summary tables can be created in DB2 for UNIX and Windows that reference
a combination of nicknames and local tables. These summary tables can be
created with the refresh deferred option only.

About this book xvii

xviii DB2 Federated Systems Guide

Part 1. Introduction to federated systems and concepts

© Copyright IBM Corp. 1998 - 2002 1

2 DB2 Federated Systems Guide

Chapter 1. Overview of a federated system

This chapter describes the features of a federated system, defines federated
concepts and terminology used throughout the book, provides an overview of
tasks needed to set up and configure a federated system, and outlines the
ways in which you can interface with a federated system.

Federated systems

A DB2® federated system is a special type of distributed database management
system (DBMS). A federated system consists of a DB2 instance that operates
as a federated server, a database that acts as the federated database, one or
more data sources, and clients (users and applications) that access the
database and data sources. With a federated system you can send distributed
requests to multiple data sources within a single SQL statement. For example,
you can join data that is located in a DB2 Universal Database™ table, an
Oracle table, and a Sybase view in a single SQL statement.

© Copyright IBM Corp. 1998 - 2002 3

The power of a DB2 federated system is in its ability to:
v Join data from local tables and remote data sources, as if all the data is

local.
v Take advantage of the data source processing strengths, by sending

distributed requests to the data sources for processing.
v Compensate for SQL limitations at the data source by processing parts of a

distributed request at the federated server.

The DB2 server in a federated system is referred to as the federated server. Any
number of DB2 instances can be configured to function as federated servers.
You can use existing DB2 instances as your federated server, or you can create
new ones specifically for the federated system.

The DB2 federated instance that manages the federated system is called a
server because responds to requests from end users and client applications.
The federated server often sends parts of the requests it receives to the data
sources for processing. A pushdown operation is an operation that is processed

Figure 1. The components of a federated system and the supported data sources

4 DB2 Federated Systems Guide

remotely. The federated instance is referred to as the federated server, even
though it acts as a client when it pushes down requests to the data sources.

Like any other application server, the federated server is a database manager
instance to which application processes connect and submit requests.
However, two main features distinguish it from other application servers:
v A federated server is configured to receive requests that might be partially

or entirely intended for data sources. The federated server distributes these
requests to the data sources.

v Like other application servers, a federated server uses DRDA®

communication protocols (such as SNA and TCP/IP) to communicate with
DB2 family instances. However, unlike other application servers, a
federated server uses other protocols to communicate with non-DB2 family
instances.

Related concepts:

v “Data sources” on page 5
v “The federated database” on page 7
v “The SQL Compiler and the query optimizer” on page 8
v “Compensation” on page 9
v “Pushdown analysis” on page 233

Data sources

Typically, a federated system data source is a relational DBMS instance (such as
Oracle or Sybase) and one or more databases that are supported by the
instance. However, there are other types of data sources (such as life sciences
data sources and search algorithms) that you can include in your federated
system:
v Spreadsheets, such as Microsoft® Excel.
v Search algorithms, such as BLAST.
v Table-structured files. These type of files have a regular structure that

consists of a series of records. Each record contains the same number of
fields that are separated by an arbitrary delimiter. Two sequential delimiters
represent null values.

v Documentum document management software that includes a repository to
store document content, attributes, relationships, versions, renditions,
formats, workflow, and security.

v XML tagged files.

In DB2® Universal Database for UNIX® and Windows, the supported data
sources are:

Chapter 1. Overview of a federated system 5

Table 1. Supported data source versions and access methods.

Data source Supported data
source versions

Access method Notes

DB2 Universal
Database™ for UNIX
and Windows®

6.1, 7.1, 7.2, 8.1 DRDA® Directly integrated
in DB2 Version 8

DB2 Universal
Database for z/OS™

and OS/390®

5 with PTF PQ07537
(or later)

DRDA Directly integrated
in DB2 Version 8

DB2 Universal
Database for
iSeries™

4.2 (or later) DRDA Directly integrated
in DB2 Version 8

DB2 Server for VM
and VSE

3.3 (or later) DRDA Directly integrated
in DB2 Version 8

Informix™ 7, 8, 9 Informix Client SDK Directly integrated
in DB2 Version 8

ODBC ODBC 3.0 driver. Requires DB2
Relational Connect

OLE DB OLE DB 2.0 (or
later)

Directly integrated
in DB2 Version 8

Oracle 7.x, 8.x, 9.x SQL*Net or Net8
client software

Requires DB2
Relational Connect

Microsoft SQL
Server

6.5, 7.0, 2000 On Windows the
Microsoft SQL
Server Client ODBC
3.0 (or higher)
driver. On UNIX the
Data Direct
Technologies
(formerly MERANT)
Connect ODBC 3.6
driver.

Requires DB2
Relational Connect

Sybase 10.0, 11.0, 11.1, 11.5,
11.9, 12.0

Sybase Open Client Requires DB2
Relational Connect

BLAST 2.1.2 BLAST daemon
(supplied with the
wrapper)

Requires DB2 Life
Sciences Data
Connect

Documentum Documentum
server: EDMS 98
(also referred to as
version 3) and 4i.

Documentum Client
API/Library

Requires DB2 Life
Sciences Data
Connect

6 DB2 Federated Systems Guide

Table 1. Supported data source versions and access methods. (continued)

Data source Supported data
source versions

Access method Notes

Microsoft Excel 97, 2000 none Requires DB2 Life
Sciences Data
Connect

table-structured files none Requires DB2 Life
Sciences Data
Connect

XML 1.0 specification none Requires DB2 Life
Sciences Data
Connect

Data sources are semi-autonomous. For example, the federated server can
send queries to Oracle data sources at the same time that Oracle applications
can access these data sources. A DB2 federated system does not monopolize
or restrict access to the other data sources, beyond integrity and locking
constraints.

The federated database

To end users and client applications, data sources appear as a single collective
database in DB2. Users and applications interface with the federated database
managed by the federated server. The federated database contains catalog
entries that identify data sources and their characteristics. The federated
server consults the information stored in the federated database system
catalog and the data source wrapper to determine the best plan for processing
SQL statements.

The federated database system catalog contains information about the objects
in the federated database and information about objects at the data sources.
The catalog in a federated database is called the global catalog because it
contains information about the entire federated system. DB2® query optimizer
uses the information in the global catalog and the data source wrapper to
plan the best way to process SQL statements. The information stored in the
global catalog includes remote and local information, such as column names,
column data types, column default values and index information.

Remote catalog information is the information or name used by the data
source. Local catalog information is the information or name used by the
federated database. For example, suppose a remote table includes a column
with the name of EMPNO. The global catalog would store the remote column
name as EMPNO. Unless you designate a different name, the local column

Chapter 1. Overview of a federated system 7

name will be stored as EMPNO. You can change the local column name to
Employee_Number. Users submitting queries which include this column will
use Employee_Number in their queries instead of EMPNO. You use column
options to change the local name of data source column.

For relational data sources, the information stored in the global catalog
includes both remote and local information. For non-relational data sources,
the information stored in the global catalog varies from data source to data
source.

To see the data source table information that is stored in the global catalog,
query the federated SYSCAT.TABLES, SYSCAT.TABOPTIONS,
SYSCAT.COLUMNS, and SYSCAT.COLOPTIONS catalog views.

The federated system processes SQL statements as if the data sources were
ordinary relational tables or views within the federated database. This enables
the federated system to join relational data with data in non-relational
formats. This is true even when the data sources use different SQL dialects, or
do not support SQL at all.

The global catalog also includes other information about the data sources. For
example, it includes information the federated server uses to connect to the
data source and map the federated user authorizations to the data source user
authorizations.

Related concepts:

v “Federated systems” on page 3
v “The SQL Compiler and the query optimizer” on page 8
v “Tuning query processing” on page 231

Related reference:

v Appendix A, “Views in the global catalog table containing federated
information” on page 281

The SQL Compiler and the query optimizer

To obtain data from data sources, users and applications submit queries in
DB2® SQL to the federated database. When a query is submitted, the DB2
SQL Compiler consults information in the global catalog and the data source
wrapper to help it process the query. This includes information about
connecting to the data source, server attributes, mappings, index information,
and processing statistics.

8 DB2 Federated Systems Guide

As part of the SQL Compiler process, the query optimizer analyzes a query. The
Compiler develops alternative strategies, called access plans, for processing the
query. Access plans might call for the query to be:
v Processed by the data sources.
v Processed by the federated server.
v Processed partly by the data sources and partly by the federated server.

DB2 evaluates the access plans primarily on the basis of information about the
data source capabilities and the data. The wrapper and the global catalog
contain this information. DB2 decomposes the query into segments that are
called query fragments. Typically it is more efficient to pushdown a query
fragment to a data source, if the data source can process the fragment.
However, the query optimizer takes into account other factors such as:
v The amount of data that needs to be processed.
v The processing speed of the data source.
v The amount of data that the fragment will return.
v The communication bandwidth.

The query optimizer generates local and remote access plans for processing a
query fragment, based on resource cost. DB2 then chooses the plan it believes
will process the query with the least resource cost.

If any of the fragments are to be processed by data sources, DB2 submits
these fragments to the data sources. After the data sources process the
fragments, the results are retrieved and returned to DB2. If DB2 performed
any part of the processing, it combines its results with the results retrieved
from the data source. DB2 then returns all results to the client.

Related concepts:

v “Tuning query processing” on page 231
v “Pushdown analysis” on page 233

Related tasks:

v “Global optimization” on page 246

Compensation

The DB2® federated server does not push down a query fragment if the data
source cannot process it, or if the federated server can process it faster than
the data source can process it. For example, suppose that the SQL dialect of a
data source does not support a CUBE grouping in the GROUP BY clause. A
query that contains a CUBE grouping and references a table in that data
source is submitted to the federated server. DB2 does not pushdown the

Chapter 1. Overview of a federated system 9

CUBE grouping to the data source, but processes the CUBE itself. The ability
by DB2 to process SQL that is not supported by a data source is called
compensation.

The federated server compensates for lack of functionality at the data source
in two ways:
v It can ask the data source to use one or more operations that are equivalent

to the DB2 function stated in the query. Suppose a data source does not
support the cotangent (COT(x)) function, but supports the tangent (TAN(x))
function. DB2 can ask the data source to perform the calculation
(1/TAN(x)), which is equivalent to the cotangent (COT(x)) function.

v It can return the set of data to the federated server, and perform the
function locally.

Each type of RDBMS supports a subset of the international SQL standard. In
addition, some types of RDBMSs support SQL constructs that exceed this
standard. An SQL dialect, is the totality of SQL that a type of RDBMS
supports. If an SQL construct is found in the DB2 SQL dialect, but not in a
data source dialect, the federated server can implement this construct on
behalf of the data source.

The following examples show the ability of DB2 to compensate for differences
in SQL dialects:
v DB2 SQL includes the clause, common-table-expression. In this clause, a

name can be specified by which all FROM clauses in a fullselect can
reference a result set. The federated server will process a
common-table-expression for a data source, even though the SQL dialect
used by the data source does not include common-table-expression.

v When connecting to a data source that does not support multiple open
cursors within an application, the federated server can simulate this
function. The federated server does this by establishing separate,
simultaneous connections to the data source. Similarly, the federated server
can simulate CURSOR WITH HOLD capability for a data source that does
not provide that function.

With compensation, the federated server can support the full DB2 SQL dialect
for queries against data sources. Even data sources with weak SQL support or
no SQL support. You must use the DB2 SQL dialect with a federated system,
except in a pass-through session.

Related concepts:

v “The SQL Compiler and the query optimizer” on page 8
v “Pass-through sessions” on page 11
v “Function mappings and function templates” on page 20

10 DB2 Federated Systems Guide

Pass-through sessions

You can submit SQL statements directly to data sources by using a special
mode called pass-through. You submit SQL statements in the SQL dialect used
by the data source. Use a pass-through session when you want to perform an
operation that is not possible with the DB2® SQL/API. For example, use a
pass-through session to create a procedure, create an index, or perform
queries in the native dialect of the data source.

Note: Currently, the data sources that support pass-through, support
pass-through using SQL. In the future, it is possible that data sources will
support pass-though using a data source language other than SQL.

Similarly, you can use a pass-through session to perform actions that are not
supported by SQL, such as certain administrative tasks. However, you cannot
use a pass-through session to perform all administrative tasks. For example,
you can create or drop tables at the data source, but you cannot start or stop
the remote database.

You can use both static and dynamic SQL in a pass-through session.

The federated server provides the following SQL statements to manage
pass-through sessions:

SET PASSTHRU
Opens a pass-through session. When you issue another SET
PASSTHRU statement to start a new pass-through session, the current
pass-through session is terminated.

SET PASSTHRU RESET
Terminates the current pass-through session.

GRANT (Server Privileges)
Grants a user, group, list of authorization IDs, or PUBLIC the
authority to initiate pass-through sessions to a specific data source.

REVOKE (Server Privileges)
Revokes the authority to initiate pass-through sessions.

The following restrictions apply to pass-through sessions:
v You must use the SQL dialect or language commands of the data source —

you cannot use the DB2 SQL dialect. As a result, you do not query a
nickname, but the data source objects directly.

v When performing UPDATE or DELETE operations in a pass-through
session, you cannot use the WHERE CURRENT OF CURSOR condition.

Related concepts:

Chapter 1. Overview of a federated system 11

v “How client applications interact with data sources” on page 255
v “Using pass-through to query data sources directly” on page 277

Related tasks:

v “Using pass-through with Oracle data sources” on page 278
v “Working with nicknames” on page 175

Wrappers and wrapper modules

Wrappers are mechanisms by which the federated server interacts with data
sources. The federated server uses routines stored in a library called a wrapper
module to implement a wrapper. These routines allow the federated server to
perform operations such as connecting to a data source and retrieving data
from it iteratively. Typically, the DB2® federated instance owner uses the
CREATE WRAPPER statement to register a wrapper in the federated system.

You create one wrapper for each type of data source that you want to access.
For example, suppose that you want to access three DB2 for z/OS™ database
tables, one DB2 for iSeries™ table, two Informix™ tables, and one Informix
view. You need to create only two wrappers: one for the DB2 data source
objects and one for the Informix data source objects. Once these wrappers are
registered in the federated database, you can use these wrappers to access
other objects from those data sources. For example, you can use the DRDA®

wrapper with all DB2 family data source objects—DB2 for UNIX® and
Windows, DB2 for z/OS and OS/390, DB2 for iSeries, and DB2 Server for VM
and VSE.

You use the server definitions and nicknames to identify the specifics (name,
location, and so forth) of each data source object.

There are wrappers for each supported data source. Some wrappers have
default wrapper names. When you use the default name to create the
wrapper, the federated server automatically picks up the data source library
associated with the wrapper.

Table 2. Default wrapper names for each data source.

Data source Default wrapper name(s)

DB2 Universal Database™ for UNIX and
Windows®

DRDA

DB2 Universal Database for z/OS and
OS/390®

DRDA

DB2 Universal Database for iSeries DRDA

DB2 Server for VM and VSE DRDA

12 DB2 Federated Systems Guide

Table 2. Default wrapper names for each data source. (continued)

Data source Default wrapper name(s)

Informix INFORMIX

Oracle SQLNet or Net8

Microsoft® SQL Server DJXMSSQL3, MSSQLODBC3

ODBC none

OLE DB OLEDB

Sybase CTLIB, DBLIB

BLAST none

Documentum none

Microsoft Excel none

Table-structured files none

XML none

A wrapper performs many tasks. Some of these tasks are:
v It connects to the data source. The wrapper uses the standard connection

API of the data source.
v It submits queries to the data source.

For data sources that do not support SQL, one of two actions will occur:
– For data sources that support SQL, the query is submitted in SQL.
– For data sources that do not support SQL, the query is translated into

the native query language of the source or into a series of source API
calls.

v It receives results sets from the data source. The wrapper uses the data
source standard APIs for receiving results set.

v It responds to federated server queries about the default data type
mappings for a data source. The wrapper contains the default type
mappings that are used when nicknames are created for a data source
object. Data type mappings you create override the default data type
mappings. User-defined data type mappings are stored in the global
catalog.

v It responds to federated server queries about the default function mappings
for a data source. The wrapper contains information the federated server
needs to determine if DB2 functions are mapped to functions of the data
source, and how the functions are mapped. This information is used by the
SQL Compiler to determine if the data source is able to perform the query
operations. Function mappings you create override the default function
type mappings. User-defined function mappings are stored in the global
catalog.

Chapter 1. Overview of a federated system 13

Wrapper options are used to configure the wrapper or to define how DB2 uses
the wrapper. Currently there is only one wrapper option, DB2_FENCED. The
DB2_FENCED wrapper option indicates if the wrapper is fenced or trusted by
DB2. A fenced wrapper operates under some restrictions.

Related concepts:

v “Create the wrapper” on page 88
v “Fast track to configuring your data sources” on page 85

Related reference:

v Appendix B, “Wrapper options for federated systems” on page 285

Server definitions and server options

After wrappers are created for the data sources, the federated instance owner
defines the data sources to the federated database. The instance owner
supplies a name to identify the data source, and other information that
pertains to the data source. If the data source is an RDBMS, this information
includes:
v The type and version of the RDBMS.
v The database name for the data source on the RDBMS.
v Metadata that is specific to the RDBMS

For example, a DB2® family data source can have multiple databases. The
definition must specify which database the federated server can connect to. In
contrast, an Oracle data source has one database, and the federated server can
connect to the database without knowing its name. The database name is not
included in the federated server definition of an Oracle data source.

The name and other information that the instance owner supplies to the
federated server are collectively called a server definition. Data sources answer
requests for data and are servers in their own right.

The CREATE SERVER and ALTER SERVER statements are used to create and
modify a server definition.

Some of the information within a server definition is stored as server options.
When you create server definitions, it is important to understand the options
that you can specify about the server. Some server options configure the
wrapper and some affect the way DB2 uses the wrapper. Server options are
specified as parameters in the CREATE SERVER and ALTER SERVER
statements.

14 DB2 Federated Systems Guide

Server options are set to values that persist over successive connections to the
data source. These values are stored in the global catalog. For example, the
name for the data source on the RDBMS is set in the NODE server option.
Some data sources have multiple databases on each instance. For these data
source, the name of the database which the federated server connects to is set
in the DBNAME server option.

To set a server option value temporarily, use the SET SERVER OPTION
statement, This statement overrides the value for the duration of a single
connection to the federated database. The overriding value does not get stored
in the global catalog.

Related concepts:

v “Supply the server definition” on page 91

Related reference:

v Appendix C, “Server options for federated systems” on page 287

User mappings and user options

When a federated server needs to pushdown a request to a data source, the
server must first establish a connection to the data source. The server does
this by using a valid user ID and password to that data source. By default, the
federated server attempts to access the data source with the user ID and
password that are used to connect to DB2. If the user ID and password are
the same between the federated server and the data source, the connection is
established. If the user ID and password to access the federated server differs
from the user ID and password to access a data source, you must define an
association between the two authorizations. Once you define the association,
distributed requests can be sent to the data source. This association is called a
user mapping.

You define and modify user mappings with the CREATE USER MAPPING
and ALTER USER MAPPING statements. These statements include
parameters, called user options, which values related to authorization are
assigned to. For example, suppose that a user has the same ID, but different
passwords, for the federated database and a data source. For the user to
access the data source, it is necessary to map the passwords to one another.
You use the CREATE USER MAPPING statement and the user option
REMOTE_PASSWORD to map the passwords. Use the ALTER USER
MAPPING statement to modify an existing user mapping.

Related concepts:

Chapter 1. Overview of a federated system 15

v “Create the user mappings and test the connection to the data source” on
page 94

Related reference:

v “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Nicknames and data source objects

After you create the server definitions and user mappings, the federated
instance owner creates the nicknames. A nickname is an identifier that is used
to reference the object located at the data sources that you want to access. The
objects that nicknames identify are referred to as data source objects.

The following table shows the data source objects you can reference when you
create a nickname.

Table 3. Data sources and the objects that you can create a nickname for

Data source Objects you can reference

DB2® for UNIX® and Windows® nicknames, summary tables, tables, views

DB2 for z/OS™ and OS/390® tables, views

DB2 for iSeries™ tables, views

DB2 Server for VM and VSE tables, views

Informix™ tables, views, synonyms

Microsoft® SQL Server tables, views

ODBC tables, views

Oracle tables, views

Sybase tables, views

BLAST FASTA files indexed for BLAST search
algorithms

document management software objects and registered tables in a
Documentum Docbase

Microsoft Excel .xls files (only the first sheet in the
workbook is accessed)

table-structured files .txt files (text files that meet a very specific
format)

XML-tagged files sets of items in an XML document

16 DB2 Federated Systems Guide

Nicknames are not alternative names for data source objects in the same way
that aliases are alternative names. They are pointers by which the federated
server references these objects. Nicknames are typically defined with the
CREATE NICKNAME statement.

When an end user or a client application submits a distributed request to the
federated server, the request does not need to specify the data sources.
Instead, it references the data source objects by their nicknames. The
nicknames are mapped to specific objects at the data source. The mappings
eliminate the need to qualify the nicknames by data source names. The
location of the data source objects is transparent to the end user or the client
application.

Suppose if you define the nickname DEPT to represent an Informix database
table called NFX1.PERSON.DEPT. The statement SELECT * FROM DEPT is
allowed from the federated server. However, the statement SELECT * FROM
NFX1.PERSON.DEPT is not allowed from the federated server (except in a
pass-through session).

When you create a nickname for a data source object, metadata about the
object is added to the global catalog. The query optimizer uses this metadata,
and the information in the wrapper, to facilitate access to the data source
object. For example, if the nickname is for a table that has an index, the global
catalog contains information about the index. The wrapper contains the
mappings between the DB2 data types and the data source data types.

Currently, you cannot execute DB2 utility operations (LOAD, REORG,
REORGCHK, IMPORT, RUNSTATS, and so on) on nicknames.

Related concepts:

v “Create nicknames for each data source object” on page 96

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Column options

You can supply the global catalog with additional metadata information about
the nicknamed object. This metadata describes values in certain columns of
the data source object. You assign this metadata to parameters that are called
column options. The column options tell the wrapper to handle the data in a
column differently than it normally would handle it. Column options are used
to provide other information to the wrapper as well. For example for XML
data sources, a column option is used to tell the wrapper the XPath
expression to use when the wrapper parses the column out of the XML

Chapter 1. Overview of a federated system 17

document. The SQL Complier and query optimizer use the metadata to
develop better plans for accessing the data.

DB2® treats the object that a nickname references as if it is a table. As a result,
you can set column options for any data source object that you create a
nickname for. Some column options are designed for specific types of data
sources and can only be applied to those data sources.

Suppose that a data source has a collating sequence that differs from the
federated database collating sequence. The federated server typically would
not sort any columns containing character data at the data source. It would
return the data to the federated database and perform the sort locally.
However, suppose that the column is a character data type (CHAR and
VARCHAR) and contains only numeric characters (’0’,’1’,...,’9’). You can
indicate this by assigning a value of ’Y’ to the NUMERIC_STRING column
option. This gives the DB2 query optimizer the option of performing the sort
at the data source. If the sort is performed remotely, you can avoid the
overhead of porting the data to the federated server and performing the sort
locally.

You can define column options in the CREATE NICKNAME and ALTER
NICKNAME statements.

Related tasks:

v “Working with nicknames” on page 175

Related reference:

v Appendix E, “Column options for federated systems” on page 299

Data type mappings

The data types at the data source must map to corresponding DB2® data
types so that the federated server can retrieve data from data sources. For
most data sources, the default type mappings are in the wrappers. The default
type mappings for DB2 data sources are in the DRDA® wrapper. The default
type mappings for Informix™ are in the INFORMIX wrapper, and so forth.

For some non-relational data sources, you must specify data type information
in the CREATE NICKNAME statement.

The corresponding DB2 for UNIX® and Windows® data types must be
specified for each column of the data source object when the nickname is
created. Each column must be mapped to a particular field or column in the
data source object.

18 DB2 Federated Systems Guide

For example:
v The Oracle type FLOAT maps by default to the DB2 type DOUBLE.
v The Oracle type DATE maps to the DB2 type DB2 TIMESTAMP.
v The DB2 for z/OS™ type DATE maps by default to the DB2 type DATE.

When values from a data source column are returned to the federated
database, the values conform fully to the DB2 data type that the data source
column is mapped to. If this is a default mapping, the values also conform
fully to the data source type in the mapping. For example, suppose an Oracle
table with a FLOAT column is defined to the federated database. The default
mapping of Oracle FLOAT to DB2 DOUBLE automatically applies to that
column. Consequently, the values that are returned from the column will
conform fully to both FLOAT and DOUBLE.

For some wrappers, you can change the format or length of values that are
returned. You do this by changing the DB2 data type that the values must
conform to. For example, the Oracle data type DATE is used as a time stamp;
the Oracle DATE data type contains century, year, month, day, hour, minute,
and second. By default, the Oracle DATE data type maps to the DB2
TIMESTAMP data type. Suppose that several Oracle table columns have a
data type of DATE. You want queries of these columns to return only the
hour, minute, and second. You can override the default data type mapping so
that the Oracle DATE data type maps to the DB2 TIME data type. When
Oracle DATE columns are queried, only the time portion of the time stamp
values is returned to DB2.

Use the CREATE TYPE MAPPING statement to create:
v A data type mapping that overrides a default data type mapping
v A data type mapping for which there currently is no mapping. For

example, when a new built-in type is available at the data source, or when
there is a user-defined type at the data source that you want to map to.

In the CREATE TYPE MAPPING statement, you can specify if the mapping
applies each time that you access that data source, or if the mapping applies
to a specific server.

Use the ALTER TYPE MAPPING statement to change a type mapping that
you originally created with the CREATE TYPE MAPPING statement. The
ALTER TYPE MAPPING statement cannot be used to change the default type
mappings.

To modify a data type mapping for a specific column of a specific data source
object, use the column option parameters in the ALTER NICKNAME
statement. This statement enables you to specify data type mappings for
individual tables, views, or other data source objects.

Chapter 1. Overview of a federated system 19

If you change a type mapping, nicknames created before the type mapping
change do not reflect the new mapping.

Unsupported data types:

DB2 federated servers do not support:
v LONG VARCHAR
v LONG VARGRAPHIC
v DATALINK
v User-defined data types (UDTs) created at the data source

You cannot create a user-defined mapping for these data types. However, you
create a nickname for view at the data source that is identical to the table that
contains the user-defined data types. The view must ’cast’ the user-defined
type column to the built-in, or system, type.

A nickname can be created for a remote table that contains LONG VARCHAR
columns. However, the results will be mapped to a local DB2 data type that is
not LONG VARCHAR.

Related concepts:

v “Modifying wrappers” on page 195

Related tasks:

v “Modifying default data type mappings” on page 208

Related reference:

v “ALTER NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2

v Appendix H, “Default forward data type mappings” on page 307

Function mappings and function templates

For the federated server to recognize a data source function, the function must
be mapped against an existing DB2® function. DB2 supplies default mappings
between existing built-in data source functions and built-in DB2 functions. For
most data sources, the default function mappings are in the wrappers. The
default function mappings from DB2 for UNIX® and Windows® functions to
DB2 for z/OS™ functions are in the DRDA® wrapper. The default function
mappings from DB2 for UNIX and Windows functions to Sybase functions are
in the CTLIB and DBLIB wrappers, and so forth.

20 DB2 Federated Systems Guide

To use a data source function that the federated server does not recognize,
you must create a function mapping. The mapping you create is between the
data source function and a counterpart function at the federated database.
Function mappings are typically used when a new built-in function and a
new user-defined function becomes available at the data source. Function
mappings are also used when a DB2 counterpart function does not exist, you
must create one on the DB2 federated server that meets the following
requirements:
v If the data source function has input parameters:

– The DB2 counterpart function must have the same number of input
parameters that the data source function has.

– The data types of the input parameters for the DB2 counterpart function
must be compatible with the corresponding data types of the input
parameters for data source function.

v If the data source function has no input parameters:
– The DB2 counterpart function cannot have any input parameters.

Note: When you create a function mapping, it is possible that the return
values from a function evaluated at the data source will be different than the
return values from a compatible function evaluated at the DB2 federated
database. DB2 will use the function mapping, but it might result in an SQL
syntax error or unexpected results.

The DB2 counterpart function can be either a complete function or a function
template.

A function template is a DB2 function that you create to invoke a function on a
data source. The federated server recognizes a data source function when
there is a mapping between the data source function and a counterpart
function at the federated database. You can create a function template to act as
the counterpart when no counterpart exists.

However, unlike a regular function, a function template has no executable
code. After you create a function template, you must then create the function
mapping between the template and the data source function. You creat a
function template with the CREATE FUNCTION statement, using the AS
TEMPLATE parameter. You create a function mapping by using the CREATE
FUNCTION MAPPING statement. When the federated server receives queries
which specify the function template, the federated server will invoke the data
source function.

Related concepts:

v “Function mappings options” on page 22

Chapter 1. Overview of a federated system 21

Related reference:

v Appendix F, “Function mapping options for federated systems” on page 301

Function mappings options

The CREATE FUNCTION MAPPING statement includes parameters called
function mapping options. You can assign values that pertain to the mapping, or
to the data source function within the mapping. For example, you can include
estimated statistics on the overhead that will be consumed when the data
source function is invoked. The query optimizer uses these estimates to decide
if the function should be invoked by the data source or by the DB2® federated
database.

Related reference:

v Appendix F, “Function mapping options for federated systems” on page 301

Index specifications

When you create a nickname for a data source table, information about any
indexes that the data source table has is added to the global catalog. The
query optimizer uses this information to expedite the processing of
distributed requests. The catalog information about a data source index is a
set of metadata, and is called an index specification. A federated server does not
create an index specification when you create a nickname for:
v A table that has no indexes.
v A view, which typically does not have any index information stored in the

remote catalog.
v A data source object that does not have a remote catalog from which the

federated server can obtain the index information.

Note: You cannot create an index specification for an Informix™ view.

Suppose that a nickname is created for a table that has no index, but the table
acquires an index later. Suppose that a table acquires a new index, in addition
to the ones it had when the nickname was created. Because index information
is supplied to the global catalog at the time the nickname is created, the
federated server is unaware of the new indexes. Similarly, when a nickname is
created for a view, the federated server is unaware of the underlying table
(and its indexes) from which the view was generated. In these circumstances,
you can supply the necessary index information to the global catalog. You can
create an index specification for tables that have no indexes. The index
specification tells the query optimizer which column or columns in the table
to search on to find data quickly.

22 DB2 Federated Systems Guide

In a federated system, you use the CREATE INDEX statement against a
nickname to supply index specification information to the global catalog. If a
table acquires a new index, the CREATE INDEX statement that you create will
reference the nickname for the table and contain information about the index
of the data source table. If a nickname is created for a view, the CREATE
INDEX statement that you create will reference the nickname for the view and
contain information about the index of the underlying table for the view.

Related concepts:

v “The SQL Compiler and the query optimizer” on page 8
v “Overview of the tasks to set up a federated system” on page 26
v “Modifying wrappers” on page 195

Related reference:

v “CREATE INDEX statement” in the SQL Reference, Volume 2

DB2 Relational Connect

Relational Connect is a separately orderable IBM® product that is used with
DB2® for UNIX® and Windows, Enterprise Server Edition. Relational Connect
feature contains wrappers for the non-IBM relational databases. In DB2
Version 8.1, Relational Connect is required if you want to access data stored in
Oracle, Sybase, Microsoft® SQL Server, and ODBC data sources.

Use the Relational Connect edition that matches the operating system that
your federated server is using:
v DB2 Relational Connect for AIX®

v DB2 Relational Connect for HP-UX
v DB2 Relational Connect for Linux (Intel 32 bit only)
v DB2 Relational Connect for Solaris Operating Environment
v DB2 Relational Connect for Windows®

Access to data stored in IBM databases (DB2 and Informix) is built into DB2
for UNIX and Windows.

Related concepts:

v “DB2 Relational Connect and the other Connect products” on page 24
v “Using Life Sciences Data Connect with DB2 Relational Connect” on page

26

Chapter 1. Overview of a federated system 23

About the other IBM Connect products

IBM offers several products in addition to Relational Connect that can be used
to access data on other servers. This section discusses the differences between:
v DB2 Connect
v DB2 Life Sciences Data Connect
v The Classic Connect driver

This section also discusses how to use DB2 Life Sciences Data Connect with
DB2 Relational Connect.

DB2 Relational Connect and the other Connect products

What is DB2 Connect?
DB2® Connect enables distributed database applications to connect to DB2 for
z/OS™ and DB2 for iSeries™ data sources, and issue SQL statements. Built
into DB2 Connect™ is the DRDA® wrapper. Using DB2 Connect, an individual
SQL statement can access tables at only one data source at a time.

DB2 Connect provides extremely fast and robust connectivity to IBM® host
and DB2 for iSeries databases for e-business and other applications. DB2
Connect can be used on the following Intel and UNIX® operating systems:
v AIX®

v HP-UX
v Windows®

v Solaris Operating Environment
v Linux

DB2 Connect is supported by the following IBM database products when
operating as DRDA Application Servers:
v DB2 for iSeries and AS/400, Version 2.1.1 or higher
v DB2 for MVS/ESA, Version 3.1 and Version 4
v DB2 for z/OS and OS/390, Version 5.1 or higher
v DB2 Universal Database, Version 5
v DB2 Server for VSE and VM, Version 5
v SQL/DS™ Version, 3.5

Using DB2 Connect with DB2 Relational Connect:

You can use DB2 Connect Enterprise Edition with DB2 Relational Connect to
issue distributed requests. For example you can query data from Oracle and
DB2 for z/OS and OS/390. This type of federated system does not require
DB2 for UNIX and Windows. When you install DB2 Relational Connect on the

24 DB2 Federated Systems Guide

same server as DB2 Connect, a database is created to store metadata about the
data sources. This metadata information is stored in the database catalog.
Since this configuration does not use DB2 for UNIX and Windows, no other
information is stored locally. This configuration is used to perform
transactions between the DB2 family of products supported by DB2 Connect
and and the RDBMSs supported by Relational Connect. Additionally, this
configuration can be used to improve query performance by allowing joins to
be performed on the same server.

A DB2 for UNIX and Windows federated server with Relational Connect
provides a capability that the DB2 Connect configuration does not. With a
DB2 for UNIX and Windows federated server, you can use the DRDA
wrapper to join or update data from multiple data sources using only one
SQL statement.

What is DB2 Life Sciences Data Connect?
DB2 Life Sciences Data Connect is a feature of DiscoveryLink. DiscoveryLink
is a solution that allows you to access many data sources through a single
query interface. Life Sciences Data Connect enables you to integrate a wide
variety of genetic, chemical, biological, and other research data from
heterogeneous distributed sources. You can access these data sources
regardless of the underlying structure or design of each database. You can
construct a single query that accesses data from several data sources. You do
not have to be concerned with the specific locations of the data, or the specific
languages recognized by the data sources. DiscoveryLink uses the DB2
federated database as its underlying engine.

DB2 Life Sciences Data Connect supports the following data sources:
v BLAST search algorithms
v Documentum
v Microsoft® Excel
v Table-structured files
v XML tagged files

What is Classic Connect?
DB2 Classic Connect is a separately orderable database server product you
can install on DB2 for z/OS and OS/390® to provide read-only access to
IMS™ and VSAM data sources. DB2 for UNIX and Windows does not
currently have a Classic Connect wrapper.

Related reference:

v Appendix J, “Quick reference - useful Internet Web sites” on page 335

Chapter 1. Overview of a federated system 25

Using Life Sciences Data Connect with DB2 Relational Connect

A federated system enables data from a life sciences data source to be joined
with other relational and non-relational data. The information in these data
sources can be accessed as if it was one large database.

The federated server communicates with a data source by using a wrapper.
The wrapper allows the server to perform operations such as connecting to a
data source and retrieving data from it. Life Science Data Connect contains
non-relational and life sciences specific wrappers. A custom wrapper has been
designed for each data source supported by Life Sciences Data Connect. The
wrapper serves as a transparent interface between DB2® and the data sources.

The query optimizer capabilities in a federated system are based on standard
SQL. However, many of the Life Sciences Data Connect data sources use
proprietary API calls rather than SQL. The federated server uses the data
source information in the wrappers and the global catalog to automatically
restructure queries, as necessary for each data source. It then returns the
combined results of a search to the end user through DB2.

When used in conjunction with DB2 Relational Connect, SQL statements are
used to query, retrieve, and join data located in life sciences data sources as
well as relational databases from IBM, Oracle, Sybase, and Microsoft.

Related reference:

v Appendix J, “Quick reference - useful Internet Web sites” on page 335

Overview of the tasks to set up a federated system

This section describes the tasks required to establish and use a federated
system. Although the tasks identify the types of users who typically execute
the tasks, other types of users can also perform these tasks. For example, the
list indicates that Database Administrators typically create mappings between
the authorizations to access the federated database and the authorizations to
access data sources. However, application programmers and end users can
also execute this task.

To establish and use a DB2® federated system:
1. The System Administrator designates a server as a DB2 federated server.
2. The System Administrator installs and configures the data source client

software and links DB2 to the client software.
3. The System Administrator installs DB2 and creates the DB2 instance.
4. The System Administrator installs DB2 Relational Connect (if necessary).

26 DB2 Federated Systems Guide

5. The Database Administrator creates a wrapper for each category of data
source that is to be included in the federated system.

6. The Database Administrator supplies the federated server with a server
definition for each data source, and might supply server options to assist
in optimizing distributed requests.

7. The Database Administrator defines an association between the
authorization IDs that are used to access the federated database and the
authorization IDs that are used to access a data source.

8. The Database Administrator and application programmers create
nicknames for the data source objects that are to be accessed.

9. Application programmers and end users retrieve information from data
sources:
v Using the DB2 SQL dialect, application programmers and end users

submit queries using the nicknames associated with the data source
objects.

v Application programmers and end users occasionally use a pass-through
session to submit queries, DML statements, and DDL statements directly
to data sources. In a pass-through session, you use the SQL dialect of
the data source, rather than the SQL dialect of DB2.

Chapter 1. Overview of a federated system 27

The following optional tasks are often also performed by the Database
Administrator and application programmers:
v Modifying the mapping between a DB2 data type and a data source data

type to override the default data type mapping.
v Modifying the mapping between a DB2 function and a data source function

to override the default function mapping.
v Providing the federated server with the index specification information if a

data source table has an index that the federated server is unaware of.

Related concepts:

v “Fast track to configuring your data sources” on page 85

Create user mappings to associate the federated
authorization IDs with the data source authorization IDs

Modifying data type mappings
Modifying function mappings
Creating index specifications

Supply a server definition and server options for
each data source

Create a wrapper for each type of data source to
be included in the federated system

Designate a DB2 server as the federated server

Install the DB2 server software. Install Relational
Connect or Life Sciences Data Connect (as needed)
Create the DB2 instance.

Install and configure the client software

Start

configuration steps

optional steps

Check the server setup including: the environment
variables, the client library links and permissions,
and the FEDERATED parameter.

Create nicknames for the data source objects

Figure 2. Flowchart of tasks to set up and configure a federated server and database

28 DB2 Federated Systems Guide

Related tasks:

v “Creating and modifying function mappings” on page 223
v “Creating index specifications for data source objects” on page 216
v “Modifying default data type mappings” on page 208
v “Fast track to setting up your server and database” on page 39

How you interact with a federated system

You interface with a federated server exactly the same as you do with any
other DB2® Universal Database. Typically you interact with the federated
system using one of these methods:
v The DB2 command line processor (CLP)
v The DB2 Command Center GUI
v The DB2 Control Center GUI
v Application programs

Note: The federated examples assume you are using the DB2 command line
processor (CLP) or the DB2 Command Center GUI to issue DB2 commands,
unless otherwise noted.

The steps in the federated documentation specify which tasks can be
performed through the Control Center. These steps provide the corresponding
commands and SQL statements that can be entered in the DB2 CLP or the
DB2 Command Center GUI.

DB2 command line processor (CLP)
You can perform all of the tasks necessary to setup, configure, tune, and
maintain the federated system through the CLP. In some cases it is the only
way to perform certain tasks you must use either the DB2 CLP or the DB2
Command Center. For example:
v Modify wrapper options.
v Create, alter, or drop user-defined data type mappings.
v Create, alter, or drop user-defined function mappings.

DB2 Command Center
Through the Command Center, you can create and run distributed requests
without having to manually type out lengthy SQL statements. Use the
Command Center when you are tuning the performance of the federated
system. The Command Center is a convenient way to use the DB2 Explain
functionality to look at the access plans for distributed requests. The
Command Center can also be used to work with the SQL Assistant tool.

Chapter 1. Overview of a federated system 29

DB2 Control Center
The Control Center GUI allows you to perform most of the tasks necessary to
setup, configure, and modify the federated system. The Control Center uses
panels—dialog boxes and wizards—to guide you through a task. These panels
contain interactive help when your mouse hovers over a control such as a list
box or command button. Additionally, each panel has a help button that
provides information about the panel task, and links to related concepts and
reference information.

The Control Center GUI is the easiest way to perform the essential data
source configurations:
v Connect to the DB2 federated instance
v Create the wrappers
v Create the server definitions and server options
v Create the user mappings
v Create the nicknames

You can also use the Control Center to modify the data source configuration.
You can alter or drop wrappers, server definitions, server options, user
mappings, and nicknames.

Application programs
Applications do not require any special coding to work with federated data.
Applications access the system just like any other DB2 client application.
Applications interface with the federated database that is within the federated
server. To obtain data from data sources, they submit queries in DB2 SQL to
the federated database. DB2 then distributes the queries to the appropriate
data sources, collects the requested data, and returns this data to the
applications. However, since DB2 interacts with the data sources through
nicknames, you need to be aware of:
v The SQL restrictions you have when working with nicknames
v How to perform operations on nicknamed objects.

Related concepts:

v “How client applications interact with data sources” on page 255

30 DB2 Federated Systems Guide

Chapter 2. Business Solutions with federated systems

Use federated functionality with data replication, spatial analysis, and data
wearhousing.

Leverage the federated functionality to solve your business needs

Database users want to ask increasingly complex questions about their data in
an effort to uncover new and valuable business intelligence. This is a driving
force behind the dramatic growth in the development of decision-support and
data-warehousing applications. The need for data integration and the ability
to model complex data and objects—geo-spatial data, text, images, and other
user-defined data types—directly in the DBMS provides users with four key
benefits:
v Enhances the business value of existing applications and data.
v Improves business intelligence with integrated searching across all data

types.
v Facilitates the development of new applications and queries.
v Improves overall application performance.

To meet this need, IBM® has developed several products that can exploit the
federated functionality in DB2® and apply business intelligence to data stored
in heterogeneous data sources. These products can address business
intelligence requirements across both IBM and non-IBM data sources without
having to physically move any data into DB2. This is an important
differentiator for IBM.

Replication with a federated system

Replication is the process of maintaining a defined set of data in more than
one location. It involves copying designated changes from one location (a
source) to another (a target), and synchronizing the data in both locations.

Replication capability is included with DB2® for UNIX® and Windows. For
DB2 for iSeries™ and DB2 for z/OS™ and OS/390, a separately orderable
product is required to perform replication. This product is DB2 Propagator.
Other DB2 products provide distributed computing, including DB2 Connect™

and DB2 Relational Connect. These Connect products allow communication
between remote DB2 databases in various operating system environments, or
between DB2 databases and non-DB2 relational databases.

© Copyright IBM Corp. 1998 - 2002 31

DB2 replication helps you integrate your distributed database environment by
replicating data between DB2 databases and also between DB2 databases and
non-DB2 relational databases using the federated features of DB2. DB2
replication does not require you to unload and load your databases manually,
but automates the copying of data between remote systems.

For a non-DB2 relational source, DB2 replication creates Capture triggers to
capture changes to the source and write them to a staging table. DB2
replication includes the Apply program, which runs on a DB2 server. The
Apply program uses a DB2 nickname for the staging table to copy the
changes from the staging table to a target table in DB2 or in another non-DB2
relational database.

For a non-DB2 relational target, the Apply program copies changes from a
DB2 source or another non-DB2 relational source to the target table using a
DB2 nickname. You administer DB2 replication for DB2 and non-DB2 sources
and targets using the DB2 Replication Center.

For more information about DB2 replication, see the DB2 Replication Guide and
Reference.

Spatial analysis with a federated system

Traditionally, geo-spatial data have been managed by specialized geographic
information systems (GISs) that cannot integrate spatial data with other
business data stored in the RDBMS and other data sources. With the addition
of object extensions to the RDBMS, GIS intelligence can now be incorporated
directly into the database. IBM® has collaborated with partner Environmental
Systems Research Institute (ESRI), a major developer of GIS systems, to
accomplish this through DB2® Spatial Extender. The integration of Spatial
Extender with the DB2 Universal Datbase has several ignificant strengths:
v Full integration of geo-spatial intelligence with the DB2 database and SQL,

including indexing and cost-based query optimization. DB2 has new
extensions to support Spatial Extender, such as abstract data types and
user-defined index structures.

v Compliance with emerging industry standards (SQL3, SQL/MM, and OGIS)
and full support for existing GIS data in three industry formats (ESRI shape
format, OGIS well-known text format, and OGIS well-known binary
format).

v Full support for popular GIS tools plus built-in support for sophisticated
rendering of map data for business-intelligence visualization, a geocoding
function for U.S. addresses, and a sample set of world map data.

32 DB2 Federated Systems Guide

By enabling any organization to enhance its understanding of its business,
leverage the value of existing data, and build sophisticated new applications,
DB2 Spatial Extender can help users answer many types of questions.
Selecting a retail site location , assessing and insurance risk, and selecting a
location to market test a new product are examples of these types of
questions.

Retail site selection
″Where should we open our new stores?″ A store or restaurant chain wants to
expand and is evaluating possible new locations. In addition to typical
business criteria, such as lease terms and the size of available buildings, the
organization also wants to consider the following for each location: the
demographics of the surrounding neighborhood (do the demographics fit our
targeted customer base?), the crime rate in the area (a low crime rate is
important for retail operations), proximity of the site to major highways (to
attract customers from outside the immediate area), proximity of major
competitors (a site with little competition will most likely mean higher sales),
and proximity to any known problem areas that must be avoided (a
restaurant obviously doesn’t want to be close to a landfill).

Insurance risk assessment
″Is this home location within our risk parameters? What price should we
charge for insuring it?″ Again, standard business considerations (age of the
home, construction quality, size, etc.) are not enough in assessing candidates
and cost for homeowners insurance. Other factors are the crime rate in the
neighborhood, proximity to local emergency services, values of comparable
properties in the area, and whether or not the house is within a known flood
or earthquake zone.

″What types of accidents happened within 500 feet of this intersection and
resulted in total claims payments of more than $10,000? How many of these
accidents involved a pedestrian and a compact car?″ In this case, the
insurance company is assessing its automobile claims experience in relation to
a specific accident location in addition to other factors.

Targeted marketing campaigns
″In which region should we test-market this new product?″ A
consumer-products or mail-order company wants to test-market a new
product on a limited basis before rolling it out across the entire sales area.
Selecting the appropriate location for the test involves finding the best match
for the target customer profile among the demographics of each region. Other
factors in the test-market decision could include availability or absence of
similar competitive products, the popularity or name-brand recognition of
various products, and relative shipping costs. The ability to graphically
display all of this information on a map will help the company visualize how
the criteria overlap and to perhaps identify unexpected criteria that may be
important.

Chapter 2. Business Solutions with federated systems 33

Using DB2 Spatial Extender with a federated system
Queries such as these can only be answered if all of the data are available and
the DBMS knows how to interpret the data. In the second insurance example,
while the DBMS may have information about the location of accidents, it may
not have the intelligence to figure out which ones were within a specified
distance of the intersection, or which ones involved both a pedestrian and a
particular type of car. Traditional DBMSs do not know how to handle spatial
data or do complex text searches. They only understand typical business data
expressed as numbers, characters, dates, etc. The applications described above
illustrate the need to integrate geo-spatial data with traditional business data,
to provide advanced query-analysis functions for correlating the data, and to
offer end-user tools that can visually display the data in a geo-spatial context.

For detailed information about using Spatial Extender, refer to the DB2 Spatial
Extender User’s Guide and Reference.

Data warehousing with a federated system

Systems that contain operational data—data that captures the daily
transactions of your business—are valuable when you need to perform
business analysis. However, several problems can arise when the operational
data is accessed directly:
v Performance is critical for many operational databases, and the systems

cannot process ad hoc queries.
v Some databases require applications programs that use a specialized type of

data manipulation language. Users trying to access the data might not have
the expertise to query the operational database.

v The operational data is not typically not organized in the most effective
way for business analysis. For example, it is more useful to query sales data
that has been summarized by product, region, and season than it is to
query the raw data.

Data warehousing solves these problems. You can create stores of
informational data — data that is extracted from operational data and then
transformed for decision making. For example, a data warehousing tool might
copy all the sales data from the operational database, perform calculations to
summarize the data, and write the summarized data in to a separate database.
Users can then query the separate database, called the warehouse, without
impacting the operational databases.

The DB2® Data Warehouse Center is a DB2 component that automates data
warehouse processing. For detailed information about data warehousing, refer
to the Data Warehouse Center web site and the DB2 Data Warehouse Center
Administration Guide.

34 DB2 Federated Systems Guide

Related concepts:

v “What is data warehousing?” in the Data Warehouse Center Administration
Guide

Chapter 2. Business Solutions with federated systems 35

36 DB2 Federated Systems Guide

Part 2. Planning, setting up, and configuring a
federated system

© Copyright IBM Corp. 1998 - 2002 37

38 DB2 Federated Systems Guide

Chapter 3. Setting up the federated server and database

There are several tasks that you need to complete before you can access a data
source. These tasks are divided into two main catagories:
v Tasks to set up the server and database.
v Tasks to configure the server and database.

To set up the server and database, you need to install the required software
on the server and create the database. To configure the server and database,
you need to provide the server and database with information about the data
sources that you want to access. This chapter discusses all the steps required
to set up the federated server and database. Subsequent chapters discuss the
steps to configure access to specific data sources.

Fast track to setting up your server and database

A federated server and database are simply a DB2 server and database, that
you setup and configure to access data sources. To set up your federated
system, you need to:
v Install the required software on the federated server and create the DB2

instance
v Check the server setup
v Create the DB2 database

Note: If you plan to access Life Sciences Data Connect data sources, consult
the DB2 Life Sciences Data Connect: Planning, Installation, and Configuration
Guide, for specific steps to setup the server and database, and configure access
to the life sciences data sources.

Note: If you plan to use DB2 Connect, consult the DB2 Connect Quick
Beginnings for DB2 Connect Enterprise Edition, for specific steps to setup DB2
Connect.

Hardware and software requirements:

The edition of DB2 server software you install depends on the data sources
you want to access. This table provides a list of the DB2 server editions and
other software you will need to setup a federated server and database.

© Copyright IBM Corp. 1998 - 2002 39

Table 4. DB2 software required to setup a federated server.

Data source DB2 V8 server
edition

Type of server
installation

Client software Other
software

BLAST v DB2 Enterprise
Server Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any None. However,
the BLAST
daemon needs
to be installed
and configured
on BLAST
server machine.

DB2 Life
Sciences Data
Connect

DB2 family of
products

v DB2 Enterprise
Server Edition

v DB2 Workgroup
Server Edition or
Unlimited Edition

v DB2 Personal
Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any None

Documentum v DB2 Enterprise
Server Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any Documentum
client
API/Library
3.1.7a (or later)

DB2 Life
Sciences Data
Connect

Informix v DB2 Enterprise
Server Edition

v DB2 Workgroup
Server Edition or
Unlimited Edition

v DB2 Personal
Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Custom

Use the set up
Informix data
source support
option.

Informix Client
SDK

None

Microsoft
Excel

DB2 Enterprise
Server Edition

Any Microsoft Excel
installed on the
federated server

DB2 Life
Sciences Data
Connect

40 DB2 Federated Systems Guide

Table 4. DB2 software required to setup a federated server. (continued)

Data source DB2 V8 server
edition

Type of server
installation

Client software Other
software

Microsoft
SQL Server

v DB2 Enterprise
Server Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any v Microsoft
SQL Server
Client
(Windows)

v Connect
ODBC 3.7
driver (AIX,
HP-UX,
Linux, Solaris
Operating
Environment)

DB2 Relational
Connect

OLE DB v DB2 Enterprise
Server Edition

v DB2 Workgroup
Server Edition or
Unlimited Edition

v DB2 Personal
Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any OLE DB 2.0 (or
later)

OLE DB
provider

Note: OLE DB
components
are part of
MDAC
(Microsoft
Data Access
Components)
and are
available on
the DB2 CD or
from the
Microsoft web
site.

ODBC v DB2 Enterprise
Server Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any ODBC DB2 Relational
Connect

Oracle v DB2 Enterprise
Server Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any SQL*Net or
Net8

DB2 Relational
Connect

Chapter 3. Setting up the federated server and database 41

Table 4. DB2 software required to setup a federated server. (continued)

Data source DB2 V8 server
edition

Type of server
installation

Client software Other
software

Sybase v DB2 Enterprise
Server Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any Sybase Open
Client

DB2 Relational
Connect

Table
structured
files

v DB2 Enterprise
Server Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any None DB2 Life
Sciences Data
Connect

XML v DB2 Enterprise
Server Edition

v DB2 Connect
Enterprise Edition
or Unlimited
Edition

Any None DB2 Life
Sciences Data
Connect

Consult the installation documentation for the specific software you are
installing to determine the disk space required.

Table 5. Locating information on software disk space requirements

Software Disk space information

DB2 Enterprise Server Edition Consult the DB2 Universal Database Quick
Beginnings for DB2 Servers

DB2 Workgroup Server Edition and
DB2 Workgroup Unlimited Edition

Consult the DB2 Universal Database Quick
Beginnings for DB2 Servers

DB2 Personal Edition Consult the DB2 Universal Database Quick
Beginnings for DB2 Personal Edition

DB2 Connect Enterprise Edition
and DB2 Connect Unlimited
Edition

Consult the DB2 Connect Quick Beginnings for DB2
Connect Enterprise Edition

DB2 Life Sciences Data Connect Consult the DB2 Universal Database Life Sciences
Data Connect: Planning, Installation, and
Configuration Guide

DB2 Relational Connect Requires approximately 10 MB of disk space

42 DB2 Federated Systems Guide

The steps to accomplish the setup of the federated server and database
depend on:
v What you already have setup.
v The data sources you want to access.

For example, the steps for setting up a new server are different than the steps
for setting up an existing server. Likewise, the steps to set up the server to
access data on Informix data sources are different than the steps to set up the
server to access Oracle data sources.

Suppose that you already have a federated server set up, but need to set up
access to additional data sources. For each data source, you will need to
install and configure any required software. For example, if you have a
federated server set up to access Oracle data sources, you will need to install
the client software for Sybase to access Sybase data sources. You will also
need to install the Sybase data source option from the DB2 Relational Connect
CD, if you have not already done so.

The basic steps to setup the federated server are:

1. Install and configure the client configuration software.
2. Install the DB2 server software on the server that will act as the federated

server. This includes:
v Creating a DB2 instance on the federated server.
v Specifying the user authorities information for the instance.

If you already have a DB2 for UNIX and Windows Version 8 server set up,
confirm that the server software you have installed meets the requirements
for the data sources you want to access. For example, if you have the DB2
Workgroup Server Edition installed, you will be able to access DB2 family,
OLE DB, and Informix data sources. However, to access Oracle data
sources, the DB2 Enterprise Server Edition is required.

3. Install and configure any additional required software on the federated
server. This might include DB2 Relational Connect and DB2 Life Sciences
Data Connect.

4. Check the server setup. This includes:
v Confirming the link between the client libraries and DB2.
v Ensuring the proper permissions are on the wrapper library files.
v Checking the data source environment variables.
v Verifying the FEDERATED parameter is set to YES.

5. Create a DB2 database on the federated server instance that will act as the
federated database.

Chapter 3. Setting up the federated server and database 43

The DB2 instance owner then proceeds with the steps to configure access to
specific data sources.

Because the setup steps vary from data source to data source, the specific
steps are provided separate topics.

Related concepts:

v “DB2 Life Sciences Data Connect” in the DB2 Life Sciences Data Connect
Planning, Installation, and Configuration Guide

v “Typical steps required to install and configure DB2 Connect EE” in the
Quick Beginnings for DB2 Connect Personal Edition

Related tasks:

v “Setting up the server to access DB2 family data sources” on page 44
v “Setting up the server to access Informix data sources” on page 47
v “Setting up the server to access Oracle data sources” on page 50
v “Setting up the server to access Sybase data sources” on page 54
v “Setting up the server to access Microsoft SQL Server data sources” on page

57
v “Setting up the server to access ODBC data sources” on page 62
v “Setting up the server to access OLE DB data sources” on page 65

Setting up the server to access DB2 family data sources

To set up a server to access DB2 family data sources, you need to install the
proper DB2 server software. The DB2 server software that you install,
depends on the data sources that you want to access. Use the following table
to select the correct DB2 server software.

Table 6. The DB2 UDB editions and the DB2 family data sources they can access.

DB2 server software Data sources the edition can access

DB2 Universal
Database Enterprise
Server Edition

v DB2 Universal Database for UNIX and Windows

v DB2 Universal Database for z/OS and OS/390

v DB2 Universal Database for iSeries

v DB2 Server for VM and VSE

DB2 Universal
Database Workgroup
Server Edition

v DB2 Universal Database for UNIX and Windows.

This includes both remote and local data sources.

DB2 Universal
Database Workgroup
Unlimited Edition

v DB2 Universal Database for UNIX and Windows.

This includes both remote and local data sources.

44 DB2 Federated Systems Guide

Table 6. The DB2 UDB editions and the DB2 family data sources they can
access. (continued)

DB2 server software Data sources the edition can access

DB2 Universal
Database Personal
Edition

v DB2 Universal Database for UNIX and Windows.

This includes only local data sources.

Prerequisites:

Before you start the setup, ensure that your system meets installation,
memory, and disk requirements. Additionally:
v On UNIX, the DB2 product CD-ROM must be mounted on your system.

See the DB2 Universal Database Quick Beginnings for DB2 Servers for the steps
to mount the CD.

v On Windows, if you plan to use LDAP on Windows 2000 or Windows .NET
to register the DB2 server in Active Directory, you must extend the
directory schema before you install the DB2 server software.

Restrictions:

On UNIX, you must have root authority to perform the installation.

On Windows, you must have a local Administrator user account with the
recommended user rights to perform the installation.

Procedure:

To set up the federated server for DB2 family data sources, install the DB2
server software on the server that will act as the federated server. You install
the DB2 server software by using the DB2 Setup Wizard.

To install the DB2 server software:
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.
v On Windows, log on with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the DB2 installation program can update

files as required.
3. Insert the DB2 CD and start the setup program—the DB2 Setup

Wizard—to install the DB2 server software.

Chapter 3. Setting up the federated server and database 45

v On UNIX, insert and mount the DB2 CD into the CD-ROM. Change to
the directory where the CD-ROM is mounted. Enter the ./db2setup
command to start the setup program.

v On Windows, insert the CD-ROM into the drive. The auto-run feature
automatically starts the DB2 Setup Wizard. If the setup program fails to
auto-start, you can start the DB2 Setup Wizard manually.
To start the DB2 Setup Wizard manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

4. The DB2 Setup Launchpad opens. From this window review the
installation prerequisites and release notes for late-breaking setup
information.

5. Proceed through the DB2 Setup Wizard installation panels and make your
selections. As part of the installation:
v Create a DB2 instance on the federated server.
v Specify the user authorities information for the instance.

Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

6. Click Finish on the last DB2 Setup Wizard installation panel to copy the
DB2 files to your system.
When you complete the installation, DB2 is installed in the one of the
following directories, depending on your operating system:
/usr/opt/db2_08_01 (AIX)
/opt/IBM/db2/V8.1 (HP-UX, Linux, Solaris Operating Environment)
\Program Files\IBM\SQLLIB (Windows)

7. To enable the DB2 server to access data sources, set the FEDERATED
parameter to Yes, by issuing this DB2 command:
UPDATE DATABASE MANAGER CONFIGURATION USING FEDERATED YES

After the DB2 server software is installed, a user with SYSADM authority
should check the setup and create the federated database. The DB2 instance
owner then configures the server to access the DB2 Family data sources.

Related concepts:

v “Instance creation” in the Administration Guide: Implementation

v “Installation overview for DB2 servers (UNIX)” in the Quick Beginnings for
DB2 Servers

v “Installation overview for DB2 servers (Windows)” in the Quick Beginnings
for DB2 Servers

46 DB2 Federated Systems Guide

v “Installation overview for a partitioned DB2 server (UNIX)” in the Quick
Beginnings for DB2 Servers

v “Installation overview for partitioned DB2 servers (Windows)” in the Quick
Beginnings for DB2 Servers

v “Fast track to configuring your data sources” on page 85

Related tasks:

v “Mounting the DB2 CD-ROM (HP-UX)” in the Quick Beginnings for DB2
Servers

v “Mounting the DB2 CD-ROM (AIX)” in the Quick Beginnings for DB2 Servers

v “Mounting the CD-ROM (Solaris)” in the Quick Beginnings for DB2 Servers

v “Fast track to setting up your server and database” on page 39
v “Checking the federated server setup” on page 67
v “Creating the federated database” on page 82

Setting up the server to access Informix data sources

If you want to access Informix data sources, you need to install the Informix
client software and DB2 server software on the server that will perform as the
federated server. You have the choice of installing one of these DB2 server
editions:
v DB2 Universal Database Enterprise Server Edition, Version 8
v DB2 Universal Database Workgroup Edition, Version 8
v DB2 Universal Database Workgroup Unlimited Edition, Version 8
v DB2 Universal Database Personal Edition, Version 8

Prerequisites:

Before you start the setup, ensure that your system meets installation,
memory, and disk requirements. Additionally:
v On UNIX, the DB2 product CD-ROM must be mounted on your system.

See the DB2 Universal Database Quick Beginnings for DB2 Servers for the steps
to mount the CD.

v On Windows, if you plan to use LDAP on Windows 2000 or Windows .NET
to register the DB2 server in Active Directory, you must extend the
directory schema before you install the DB2 server software.

Restrictions:

On UNIX, you must have root authority to perform the installation.

Chapter 3. Setting up the federated server and database 47

On Windows, you must have a local Administrator user account with the
recommended user rights to perform the installation.

Procedure:

The steps to set up the federated server for Informix data sources are:
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.
v On Windows, log on with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the DB2 installation program can update

files as required.
3. Install and configure the Informix Client SDK software on the server that

will act as the DB2 federated server.
See the installation procedures in the documentation that comes with the
Informix database software for specific details on how to install the client
software.

4. To ensure that the client software is able to connect to the Informix
server, run the Informix demo program to test the connection.

5. Insert the DB2 CD and start the setup program—the DB2 Setup
Wizard—to install the DB2 server software.
v On UNIX, insert and mount the DB2 CD into the CD-ROM. Change to

the directory where the CD-ROM is mounted. Enter the ./db2setup
command to start the setup program.

v On Windows, insert the CD-ROM into the drive. The auto-run feature
automatically starts the DB2 Setup Wizard. If the setup program fails
to auto-start, you can start the DB2 Setup Wizard manually.
To start the DB2 Setup Wizard manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

6. The DB2 Setup Launchpad opens. From this window review the
installation prerequisites and release notes for late-breaking setup
information.

7. Select the Custom installation option. You must use the Custom
installation to setup support for Informix data sources.
Installation help is available to guide you through the steps. To invoke
the installation help, click Help or press F1. You can click Cancel at any
time to end the installation.

8. As you proceed through the DB2 Setup Wizard installation panels,
choose Set up Informix data source support. The set up will require you
to identify:
v The local path where you installed the Informix client software.

48 DB2 Federated Systems Guide

v The name of the default Informix server.

The Custom installation will update the sqllib/cfg/db2dj.ini file to set
several data source environment variables: INFORMIXDIR and
INFORMIXSERVER. If you need to set the INFORMIXSQLHOSTS
environment variable, you will need to set it manually. The steps are
described in the topic, Checking the data source environment variables.

On UNIX, the installation will also link DB2 to the Informix client
software.

Caution: If you do not install the Informix client software before you run
the DB2 Custom installation, you will have to manually set the
environment variables and link DB2 to the client software. These steps
are in the topic, Checking the federated server setup.

9. As part of the installation, create a DB2 instance on the federated server
and specify the user authorities information for the instance.

10. Click Finish on the last DB2 Setup Wizard installation panel to copy the
DB2 files to your system.
When you complete the installation, DB2 is installed in the one of the
following directories, depending on your operating system:
/usr/opt/db2_08_01 (AIX)
/opt/IBM/db2/V8.1 (HP-UX, Linux, Solaris Operating Environment)
\Program Files\IBM\SQLLIB (Windows)

11. To enable the DB2 server to access data sources, set the FEDERATED
parameter to Yes, by issuing this DB2 command:
UPDATE DATABASE MANAGER CONFIGURATION USING FEDERATED YES

After the DB2 server software is installed, a user with SYSADM authority
should check the setup and create the federated database. The DB2 instance
owner then configures the server to access the Informix data sources.

Related concepts:

v “Instance creation” in the Administration Guide: Implementation

v “Installation overview for DB2 servers (UNIX)” in the Quick Beginnings for
DB2 Servers

v “Installation overview for DB2 servers (Windows)” in the Quick Beginnings
for DB2 Servers

v “Installation overview for a partitioned DB2 server (UNIX)” in the Quick
Beginnings for DB2 Servers

v “Installation overview for partitioned DB2 servers (Windows)” in the Quick
Beginnings for DB2 Servers

v “Fast track to configuring your data sources” on page 85

Chapter 3. Setting up the federated server and database 49

Related tasks:

v “Mounting the DB2 CD-ROM (HP-UX)” in the Quick Beginnings for DB2
Servers

v “Mounting the DB2 CD-ROM (AIX)” in the Quick Beginnings for DB2 Servers

v “Mounting the CD-ROM (Solaris)” in the Quick Beginnings for DB2 Servers

v “Fast track to setting up your server and database” on page 39
v “Checking the federated server setup” on page 67
v “Checking the data source environment variables” on page 68
v “Creating the federated database” on page 82

Setting up the server to access Oracle data sources

If you want to access Oracle data sources, you need to install the following
software on the server that will perform as the federated server:
v The Oracle client software. The supported client software versions are 7, 8,

and 9.
v DB2 Universal Database Enterprise Server Edition, Version 8
v DB2 Relational Connect, Version 8

Prerequisites:

Before you start the setup, ensure that your system meets installation,
memory, and disk requirements. Additionally:
v On UNIX, the DB2 product CD-ROM must be mounted on your system.

See the DB2 Universal Database Quick Beginnings for DB2 Servers for the steps
to mount the CD.

v On Windows, if you plan to use LDAP on Windows 2000 or Windows .NET
to register the DB2 server in Active Directory, you must extend the
directory schema before you install the DB2 server software.

Restrictions:

On UNIX, you must have root authority to perform the installation.

On Windows, you must have a local Administrator user account with the
recommended user rights to perform the installation.

Procedure:

The steps to set up the federated server for Oracle data sources are:
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.

50 DB2 Federated Systems Guide

v On Windows, log on with the Administrator account that you have
defined for DB2 installation.

2. Close all open programs so that the DB2 installation program can update
files as required.

3. Install and configure the Oracle client software on the server that will act
as the DB2 federated server.
v You can install the Oracle Version 7 client software on servers that use

AIX, and Windows
v You can install the Oracle Version 8 client software on servers that use

AIX, HP-UX, Linux, Solaris Operating Environment, and Windows.

See the installation procedures in the documentation that comes with the
Oracle database software for specific details on how to install the client
software.

4. To ensure that the client software is able to connect to the Oracle server,
use the Oracle sqlplus tool to test the connection.

5. Insert the DB2 CD and start the setup program—the DB2 Setup
Wizard—to install the DB2 server software.
v On UNIX, insert and mount the DB2 CD into the CD-ROM. Change to

the directory where the CD-ROM is mounted. Enter the ./db2setup
command to start the DB2 Setup Wizard.

v On Windows, insert the CD-ROM into the drive. The auto-run feature
automatically starts the DB2 Setup Wizard. If the setup program fails to
auto-start, you can start the DB2 Setup Wizard manually.
To start the DB2 Setup Wizard manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

6. The DB2 Setup Launchpad opens. From this window review the
installation prerequisites and release notes for late-breaking setup
information.

7. Proceed through the DB2 Setup Wizard installation panels and make your
selections.
Note: As part of the installation, do not create a DB2 instance. You will
create the instance when you install DB2 Relational Connect.
Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

8. Click Finish on the last DB2 Setup Wizard installation panel to copy the
DB2 files to your system.
When you complete the installation, DB2 is installed in the one of the
following directories, depending on your operating system:
/usr/opt/db2_08_01 (AIX)

Chapter 3. Setting up the federated server and database 51

/opt/IBM/db2/V8.1 (HP-UX, Linux, Solaris Operating Environment)
\Program Files\IBM\SQLLIB (Windows)

After you install the client software and the DB2 server software, you need to
install DB2 Relational Connect, Version 8 on the DB2 server. DB2 Relational
Connect contains the software that you need to access Oracle data sources.
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.
v On Windows, log on with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the installation program can update files

as required.
3. Insert the DB2 Relational Connect CD, and start the setup program to

install DB2 Relational Connect.
v On UNIX, insert and mount the DB2 Relational Connect CD into the

CD-ROM. Change to the directory where the CD-ROM is mounted.
Enter the ./db2setup command to start the setup program.

v On Windows, insert the DB2 Relational Connect CD into the CD-ROM
drive. The auto-run feature automatically starts the setup program. If
the setup program fails to auto-start, you can start the setup program
manually.
To start the setup program manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

4. The DB2 Relational Connect Setup Launchpad opens. From this window
review the installation prerequisites and release notes for late-breaking
setup information.

5. From the Select the features to install panel in the setup program, choose
Relational Connect for Oracle Data Sources. The set up will require you
to identify the local path where you installed the Oracle client software.
The Relational Connect installation will update the sqllib/cfg/db2dj.ini
file to set the ORACLE_HOME environment variable. If you need to set
the ORACLE_BASE and ORA_NLS environment variables, you will need
to set them manually. The steps are described in the topic, Checking the
data source environment variables.
On UNIX, the installation will also link DB2 to the Oracle client software.
Caution: If you do not install the Oracle client software before you run the
DB2 Relational Connect installation, you will have to manually set the
environment variables and link DB2 to the client software. These steps are
in the topic, Checking the federated server setup.

52 DB2 Federated Systems Guide

Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

6. As part of the installation:
v Create a DB2 instance on the federated server. This will set the DB2

database manager FEDERATED parameter to YES, which enables the
DB2 server to access the data sources.

v Specify the user authorities information for the instance.
7. Click Finish on the last setup installation panel to copy the DB2 Relational

Connect files to your system.
When you complete the installation, DB2 Relational Connect is installed in
the same directory as the DB2 server software.

After the software is installed, a user with SYSADM authority should check
the setup and create the federated database. The DB2 instance owner then
configures the server to access the Oracle data sources.

Related concepts:

v “Instance creation” in the Administration Guide: Implementation

v “Installation overview for DB2 servers (UNIX)” in the Quick Beginnings for
DB2 Servers

v “Installation overview for DB2 servers (Windows)” in the Quick Beginnings
for DB2 Servers

v “Installation overview for a partitioned DB2 server (UNIX)” in the Quick
Beginnings for DB2 Servers

v “Installation overview for partitioned DB2 servers (Windows)” in the Quick
Beginnings for DB2 Servers

v “Fast track to configuring your data sources” on page 85

Related tasks:

v “Mounting the DB2 CD-ROM (HP-UX)” in the Quick Beginnings for DB2
Servers

v “Mounting the DB2 CD-ROM (AIX)” in the Quick Beginnings for DB2 Servers

v “Mounting the CD-ROM (Solaris)” in the Quick Beginnings for DB2 Servers

v “Fast track to setting up your server and database” on page 39
v “Checking the federated server setup” on page 67
v “Checking the data source environment variables” on page 68
v “Creating the federated database” on page 82

Chapter 3. Setting up the federated server and database 53

Setting up the server to access Sybase data sources

If you want to access Sybase data sources, you need to install the following
software on the server that will perform as the federated server:
v Sybase Open Client software, Version 11.1 or later
v DB2 Universal Database Enterprise Server Edition, Version 8
v DB2 Relational Connect, Version 8

Prerequisites:

Before you start the setup, ensure that your system meets installation,
memory, and disk requirements. Additionally:
v On UNIX, the DB2 product CD-ROM must be mounted on your system.

See the DB2 Universal Database Quick Beginnings for DB2 Servers for the steps
to mount the CD.

v On Windows, if you plan to use LDAP on Windows 2000 or Windows .NET
to register the DB2 server in Active Directory, you must extend the
directory schema before you install the DB2 server software.

Restrictions:

On UNIX, you must have root authority to perform the installation.

On Windows, you must have a local Administrator user account with the
recommended user rights to perform the installation.

Procedure:

The steps to set up the federated server for Sybase data sources are:
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.
v On Windows, log on with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the DB2 installation program can update

files as required.
3. Install and configure the Sybase Open Client software on the server that

will act as the DB2 federated server.
See the installation procedures in the documentation that comes with the
Sybase database software for specific details on how to install the client
software.

4. To ensure that the client software is able to connect to the Sybase server,
use a Sybase tool such as isql to test the connection.

54 DB2 Federated Systems Guide

5. Insert the DB2 CD and start the setup program—the DB2 Setup
Wizard—to install the DB2 server software.
v On UNIX, insert and mount the DB2 CD into the CD-ROM. Change to

the directory where the CD-ROM is mounted. Enter the ./db2setup
command to start the DB2 Setup Wizard.

v On Windows, insert the CD-ROM into the drive. The auto-run feature
automatically starts the DB2 Setup Wizard. If the setup program fails to
auto-start, you can start the DB2 Setup Wizard manually.
To start the DB2 Setup Wizard manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

6. The DB2 Setup Launchpad opens. From this window review the
installation prerequisites and release notes for late-breaking setup
information.

7. Proceed through the DB2 Setup Wizard installation panels and make your
selections.
Note: As part of the installation, do not create a DB2 instance. You will
create the instance when you install DB2 Relational Connect.
Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

8. Click Finish on the last DB2 Setup Wizard installation panel to copy the
DB2 files to your system.
When you complete the installation, DB2 is installed in the one of the
following directories, depending on your operating system:
/usr/opt/db2_08_01 (AIX)
/opt/IBM/db2/V8.1 (HP-UX, Linux, Solaris Operating Environment)
\Program Files\IBM\SQLLIB (Windows)

After you install the client software and the DB2 server software, you need to
install DB2 Relational Connect, Version 8 on the DB2 server. DB2 Relational
Connect contains the software that you need to access Sybase data sources.
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.
v On Windows, log on with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the installation program can update files

as required.
3. Insert the DB2 Relational Connect CD, and start the setup program to

install DB2 Relational Connect.

Chapter 3. Setting up the federated server and database 55

v On UNIX, insert and mount the DB2 Relational Connect CD into the
CD-ROM. Change to the directory where the CD-ROM is mounted.
Enter the ./db2setup command to start the setup program.

v On Windows, insert the DB2 Relational Connect CD into the CD-ROM
drive. The auto-run feature automatically starts the setup program. If
the setup program fails to auto-start, you can start the setup program
manually.
To start the setup program manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

4. The DB2 Relational Connect Setup Launchpad opens. From this window
review the installation prerequisites and release notes for late-breaking
setup information.

5. From the Select the features to install panel in the setup program, choose
Relational Connect for Sybase Data Sources. The setup will require you
to identify the local path where you installed the Sybase client software.
The Relational Connect installation will update the sqllib/cfg/db2dj.ini
file to set the SYBASE environment variable. If you need to set the
SYBASE_OCS environment variable, you will need to set it manually. The
steps are described in the topic, Checking the data source environment
variables.
On UNIX, the installation will also link DB2 to the Sybase client software.
Caution: If you do not install the Sybase Open client software before you
run the DB2 Relational Connect installation, you will have to manually set
the environment variables and link DB2 to the client software. These steps
are in the topic, Checking the federated server setup.
Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

6. As part of the installation:
v Create a DB2 instance on the federated server. This will set the DB2

database manager FEDERATED parameter to YES, which enables the
DB2 server to access the data sources.

v Specify the user authorities information for the instance.
7. Click Finish on the last setup installation panel to copy the DB2 Relational

Connect files to your system.
When you complete the installation, DB2 Relational Connect is installed in
the same directory as the DB2 server software.

After the software is installed, a user with SYSADM authority should check
the setup and create the federated database. The DB2 instance owner then
configures the server to access the Sybase data sources.

56 DB2 Federated Systems Guide

Related concepts:

v “Instance creation” in the Administration Guide: Implementation

v “Installation overview for DB2 servers (UNIX)” in the Quick Beginnings for
DB2 Servers

v “Installation overview for DB2 servers (Windows)” in the Quick Beginnings
for DB2 Servers

v “Installation overview for a partitioned DB2 server (UNIX)” in the Quick
Beginnings for DB2 Servers

v “Installation overview for partitioned DB2 servers (Windows)” in the Quick
Beginnings for DB2 Servers

v “Fast track to configuring your data sources” on page 85

Related tasks:

v “Mounting the DB2 CD-ROM (HP-UX)” in the Quick Beginnings for DB2
Servers

v “Mounting the DB2 CD-ROM (AIX)” in the Quick Beginnings for DB2 Servers

v “Mounting the CD-ROM (Solaris)” in the Quick Beginnings for DB2 Servers

v “Fast track to setting up your server and database” on page 39
v “Checking the federated server setup” on page 67
v “Checking the data source environment variables” on page 68
v “Creating the federated database” on page 82

Setting up the server to access Microsoft SQL Server data sources

If you want to access Microsoft SQL Server data sources, you need to install
the following software on the server that will perform as the federated server:
v The proper ODBC driver:

– On UNIX, the Connect ODBC Version 3.7 driver
– On Windows, the Microsoft SQL Server Client Version 2000.8 driver

v DB2 Universal Database Enterprise Server Edition, Version 8
v DB2 Relational Connect, Version 8

Prerequisites:

Before you start the setup, ensure that your system meets installation,
memory, and disk requirements. Additionally:
v On UNIX, the DB2 product CD-ROM must be mounted on your system.

See the DB2 Universal Database Quick Beginnings for DB2 Servers for the steps
to mount the CD.

Chapter 3. Setting up the federated server and database 57

v On Windows, if you plan to use LDAP on Windows 2000 or Windows .NET
to register the DB2 server in Active Directory, you must extend the
directory schema before you install the DB2 server software.

Restrictions:

On UNIX, you must have root authority to perform the installation.

On Windows, you must have a local Administrator user account with the
recommended user rights to perform the installation.

Procedure:

The steps to set up the federated server for Microsoft SQL Server data sources
are:
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.
v On Windows, log on with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the DB2 installation program can update

files as required.
3. Install and configure the ODBC driver on the server that will act as the

DB2 federated server.
v On UNIX, install the Connect ODBC 3.7 driver and test the connection

to the Microsoft SQL Server.
– Specify the Connect library directory as the first entry in the

LIBPATH.
– Make the Connect ODBC libraries available to other users by

checking the permissions on the Connect ODBC libraries.
– Test the configuration of the .odbc.ini and the connection to the

Microsoft SQL Server data source using the Connect ODBC
demoodbc test tool. The demoodbc test tool is located in the /demo
subdirectory of Connect ODBC. The demoodbc test tool attempts to
connect to a requested SQL Server data source and query the EMP
table. Since it is unlikely that the Microsoft SQL Server data source
has an EMP table, you should expect to receive error messages. The
test is successful if:
- Messages indicate there is no EMP table.
- Records from an EMP table are returned.
- Messages indicate that there is an EMP table, but that the

requested columns are not present.

58 DB2 Federated Systems Guide

The demoodbc test tool needs to be run by a user on the UNIX
system other than root authority. If no other user is on the system, a
user with root authority can create a group and user ID for the DB2
instance. Use this user ID to run the demoodbc test tool. For
example, root can create the group db2admin1 and the user db2inst1.
This does not create the instance, it adds a new user ID that will be
the instance owner. To run demoodbc, the db2inst1 user needs to:
- Add the Connect ODBC /lib subdirectory to the LIBPATH system

environment variable value. Typically the directory is
/opt/odbc/lib and can be set with this command:
export LIBPATH=/opt/odbc/lib:$LIBPATH

- Set the ODBCINI system environment variable to point to the
location of the odbc.ini. file that has ODBC connection
information for the SQL Server data source. Use the export
command to set the ODBCINI system environment variable. For
example, if the location of the odbc.ini file is the home directory
of DB2 instance owner user db2inst1 and the federated server
operating system is AIX, the command is:
export ODBCINI=/home/db2inst1/.odbc.ini

v On Windows, the Microsoft SQL Server Client Version 2000.8 driver
should be installed when you install Windows. You need to confirm that
the driver is installed, and configure the driver to access Microsoft SQL
Server data sources.
– Confirm that the driver is installed. Access the Microsoft ODBC Data

Source Administrator through the Windows Control Panel. Click the
Drivers tab to confirm that the 2000.8 driver is installed.

– Register the Microsoft SQL Server data source as a System DSN. Use
the Configure button to test the connection to the Microsoft SQL
Server data source.

Note: If you are using Microsoft SQL Server 2000 Personal Edition, you
must use the SQL Server Client Network Utility to add a new SQL
Server ODBC data source to your ODBC System DSN list.

See the installation procedures in the documentation that comes with the
ODBC driver for specific details on how to install and configure the driver.

4. Insert the DB2 CD and start the setup program—the DB2 Setup
Wizard—to install the DB2 server software.
v On UNIX, insert and mount the DB2 CD into the CD-ROM. Change to

the directory where the CD-ROM is mounted. Enter the ./db2setup
command to start the DB2 Setup Wizard.

v On Windows, insert the CD-ROM into the drive. The auto-run feature
automatically starts the DB2 Setup Wizard. If the setup program fails to
auto-start, you can start the DB2 Setup Wizard manually.

Chapter 3. Setting up the federated server and database 59

To start the DB2 Setup Wizard manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

5. The DB2 Setup Launchpad opens. From this window review the
installation prerequisites and release notes for late-breaking setup
information.

6. Proceed through the DB2 Setup Wizard installation panels and make your
selections.
Note: As part of the installation, do not create a DB2 instance. You will
create the instance when you install DB2 Relational Connect.
Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

7. Click Finish on the last DB2 Setup Wizard installation panel to copy the
DB2 files to your system.
When you complete the installation, DB2 is installed in the one of the
following directories, depending on your operating system:
/usr/opt/db2_08_01 (AIX)
/opt/IBM/db2/V8.1 (HP-UX, Linux, Solaris Operating Environment)
\Program Files\IBM\SQLLIB (Windows)

After you install the client software and the DB2 server software, you need to
install DB2 Relational Connect, Version 8 on the DB2 server. DB2 Relational
Connect contains the software that you need to access Microsoft SQL Server
data sources.
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.
v On Windows, log on with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the installation program can update files

as required.
3. Insert the DB2 Relational Connect CD, and start the setup program to

install DB2 Relational Connect.
v On UNIX, insert and mount the DB2 Relational Connect CD into the

CD-ROM. Change to the directory where the CD-ROM is mounted.
Enter the ./db2setup command to start the setup program.

v On Windows, insert the DB2 Relational Connect CD into the CD-ROM
drive. The auto-run feature automatically starts the setup program. If
the setup program fails to auto-start, you can start the setup program
manually.

60 DB2 Federated Systems Guide

To start the setup program manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

4. The DB2 Relational Connect Setup Launchpad opens. From this window
review the installation prerequisites and release notes for late-breaking
setup information.

5. From the Select the features to install panel in the setup program, choose
Relational Connect for SQL Server Data Sources. The setup will require
you to identify:
v The local path where the ODBC driver is installed.
v The local path of the ODBC Driver Manager directory.
v The local path of the ODBC trace directory.
v The local path of the ODBC library.

The Relational Connect installation will update the sqllib/cfg/db2dj.ini
file to set several data source environment variables: ODBCINI,
DJXODBCTRACE, and DJX_ODBC_LIBRARY_PATH 7. If you need to set
other environment variables, you will need to set it manually. The steps
are described in the topic, Checking the data source environment
variables.

On UNIX, the installation will also link DB2 to the ODBC driver.

Caution: If you do not install the Microsoft SQL Server driver before you
run the DB2 Relational Connect installation, you will have to manually set
the environment variables and link DB2 to the client software. These steps
are in the topic, Checking the federated server setup.

Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

6. As part of the installation:
v Create a DB2 instance on the federated server. This will set the DB2

database manager FEDERATED parameter to YES, which enables the
DB2 server to access the data sources.

v Specify the user authorities information for the instance.
7. Click Finish on the last setup installation panel to copy the DB2 Relational

Connect files to your system.
When you complete the installation, DB2 Relational Connect is installed in
the same directory as the DB2 server software.

8. Link or copy the .odbc.ini file to the home directory of the DB2 instance
owner. The .odbc.ini file that comes with the ODBC driver is located in
the client directory.

Chapter 3. Setting up the federated server and database 61

After the software is installed, a user with SYSADM authority should check
the setup and create the federated database. The DB2 instance owner then
configures the server to access the Microsoft SQL Server data sources.

Related concepts:

v “Instance creation” in the Administration Guide: Implementation

v “Installation overview for DB2 servers (UNIX)” in the Quick Beginnings for
DB2 Servers

v “Installation overview for DB2 servers (Windows)” in the Quick Beginnings
for DB2 Servers

v “Installation overview for a partitioned DB2 server (UNIX)” in the Quick
Beginnings for DB2 Servers

v “Installation overview for partitioned DB2 servers (Windows)” in the Quick
Beginnings for DB2 Servers

v “Fast track to configuring your data sources” on page 85

Related tasks:

v “Mounting the DB2 CD-ROM (HP-UX)” in the Quick Beginnings for DB2
Servers

v “Mounting the DB2 CD-ROM (AIX)” in the Quick Beginnings for DB2 Servers

v “Mounting the CD-ROM (Solaris)” in the Quick Beginnings for DB2 Servers

v “Fast track to setting up your server and database” on page 39
v “Checking the federated server setup” on page 67
v “Checking the data source environment variables” on page 68
v “Creating the federated database” on page 82

Setting up the server to access ODBC data sources

If you want to access ODBC data sources, you need to install the following
software on the server that will perform as the federated server:
v ODBC Version 3.0 driver
v DB2 Universal Database Enterprise Server Edition, Version 8
v DB2 Relational Connect, Version 8

Prerequisites:

Before you start the setup, ensure that your system meets installation,
memory, and disk requirements. Additionally:
v On Windows, if you plan to use LDAP on Windows 2000 or Windows .NET

to register the DB2 server in Active Directory, you must extend the
directory schema before you install the DB2 server software.

62 DB2 Federated Systems Guide

Restrictions:

On Windows, you must have a local Administrator user account with the
recommended user rights to perform the installation.

Procedure:

The steps to set up the federated server for ODBC data sources are:
1. Log on to the system with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the DB2 installation program can update

files as required.
3. Install and configure the ODBC Version 3.0 driver on the server that will

act as the DB2 federated server. Register the ODBC data source as a
System DSN. Access the Microsoft ODBC Data Source Administrator
through the Windows Control Panel. Use the Configure button to test the
connection to the ODBC data source.
See the installation procedures in the documentation that comes with the
ODBC driver for specific details on how to install and configure the driver.

4. Insert the DB2 CD and start the setup program—the DB2 Setup
Wizard—to install the DB2 server software.
v On Windows, insert the CD-ROM into the drive. The auto-run feature

automatically starts the DB2 Setup Wizard. If the setup program fails to
auto-start, you can start the DB2 Setup Wizard manually.
To start the DB2 Setup Wizard manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

5. The DB2 Setup Launchpad opens. From this window review the
installation prerequisites and release notes for late-breaking setup
information.

6. Proceed through the DB2 Setup Wizard installation panels and make your
selections.
Note: As part of the installation, do not create a DB2 instance. You will
create the instance when you install DB2 Relational Connect.
Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

7. Click Finish on the last DB2 Setup Wizard installation panel to copy the
DB2 files to your system.
When you complete the installation, DB2 is installed in the following
directory:
\Program Files\IBM\SQLLIB

Chapter 3. Setting up the federated server and database 63

After you install the client software and the DB2 server software, you need to
install DB2 Relational Connect, Version 8 on the DB2 server. DB2 Relational
Connect contains the software that you need to access ODBC data sources.
1. Log on to the system with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the installation program can update files

as required.
3. Insert the DB2 Relational Connect CD, and start the setup program to

install DB2 Relational Connect.
v On Windows, insert the DB2 Relational Connect CD into the CD-ROM

drive. The auto-run feature automatically starts the setup program. If
the setup program fails to auto-start, you can start the setup program
manually.
To start the setup program manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

4. The DB2 Relational Connect Setup Launchpad opens. From this window
review the installation prerequisites and release notes for late-breaking
setup information.

5. From the Select the features to install panel in the setup program, choose
Relational Connect for ODBC Data Sources.
Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

6. As part of the installation:
v Create a DB2 instance on the federated server. This will set the DB2

database manager FEDERATED parameter to YES, which enables the
DB2 server to access the data sources.

v Specify the user authorities information for the instance.
7. Click Finish on the last setup installation panel to copy the DB2 Relational

Connect files to your system.
When you complete the installation, DB2 Relational Connect is installed in
the same directory as the DB2 server software.

After the software is installed, a user with SYSADM authority should check
the setup and create the federated database. The DB2 instance owner then
configures the server to access the ODBC data sources.

Related concepts:

v “Instance creation” in the Administration Guide: Implementation

v “Installation overview for DB2 servers (UNIX)” in the Quick Beginnings for
DB2 Servers

64 DB2 Federated Systems Guide

v “Installation overview for DB2 servers (Windows)” in the Quick Beginnings
for DB2 Servers

v “Installation overview for a partitioned DB2 server (UNIX)” in the Quick
Beginnings for DB2 Servers

v “Installation overview for partitioned DB2 servers (Windows)” in the Quick
Beginnings for DB2 Servers

v “Fast track to configuring your data sources” on page 85

Related tasks:

v “Mounting the DB2 CD-ROM (HP-UX)” in the Quick Beginnings for DB2
Servers

v “Mounting the DB2 CD-ROM (AIX)” in the Quick Beginnings for DB2 Servers

v “Mounting the CD-ROM (Solaris)” in the Quick Beginnings for DB2 Servers

v “Fast track to setting up your server and database” on page 39
v “Checking the federated server setup” on page 67
v “Creating the federated database” on page 82

Setting up the server to access OLE DB data sources

If you want to access data that is stored in OLE DB data sources, you have
the choice of installing one of these DB2 server editions:
v DB2 Universal Database Enterprise Server Edition, Version 8
v DB2 Universal Database Workgroup Edition, Version 8
v DB2 Universal Database Workgroup Unlimited Edition, Version 8
v DB2 Universal Database Personal Edition, Version 8

Prerequisites:

Before you start the setup, ensure that your system meets installation,
memory, and disk requirements. Additionally:
v On UNIX, the DB2 product CD-ROM must be mounted on your system.

See the Quick Beginnings for DB2 Servers for the steps to mount the CD.
v On Windows, if you plan to use LDAP on Windows 2000 or Windows .NET

to register the DB2 server in Active Directory, you must extend the
directory schema before you install the DB2 server software.

Restrictions:

On UNIX, you must have root authority to perform the installation.

Chapter 3. Setting up the federated server and database 65

On Windows, you must have a local Administrator user account with the
recommended user rights to perform the installation.

Procedure:

To set up the federated server for OLE DB data sources, install the DB2 server
software on the server that will act as the federated server. You install the DB2
server software by using the DB2 Setup Wizard.

To install the DB2 server software:
1. Log on to the system.

v On UNIX, log on under a user ID that has root authority.
v On Windows, log on with the Administrator account that you have

defined for DB2 installation.
2. Close all open programs so that the DB2 installation program can update

files as required.
3. Insert the DB2 CD and start the setup program—the DB2 Setup

Wizard—to install the DB2 server software.
v On UNIX, insert and mount the DB2 CD into the CD-ROM. Change to

the directory where the CD-ROM is mounted. Enter the ./db2setup
command to start the setup program.

v On Windows, insert the CD-ROM into the drive. The auto-run feature
automatically starts the DB2 Setup Wizard. If the setup program fails to
auto-start, you can start the DB2 Setup Wizard manually.
To start the DB2 Setup Wizard manually, click Start and select the Run
option. In the Open field, enter x:\setup, where x: represents your
CD-ROM drive. Then click OK.

4. The DB2 Setup Launchpad opens. From this window review the
installation prerequisites and release notes for late-breaking setup
information.

5. Proceed through the DB2 Setup Wizard installation panels and make your
selections. As part of the installation:
v Create a DB2 instance on the federated server.
v Specify the user authorities information for the instance.

Installation help is available to guide you through the steps. To invoke the
installation help, click Help or press F1. You can click Cancel at any time
to end the installation.

6. Click Finish on the last DB2 Setup Wizard installation panel to copy the
DB2 files to your system.
When you complete the installation, DB2 is installed in the one of the
following directories, depending on your operating system:

66 DB2 Federated Systems Guide

/usr/opt/db2_08_01 (AIX)
/opt/IBM/db2/V8.1 (HP-UX, Linux, Solaris Operating Environment)
\Program Files\IBM\SQLLIB (Windows)

7. To enable the DB2 server to access data sources, set the FEDERATED
parameter to Yes, by issuing this DB2 command:
UPDATE DATABASE MANAGER CONFIGURATION USING FEDERATED YES

After the DB2 server software is installed, a user with SYSADM authority
should check the setup and create the federated database. The DB2 instance
owner then configures the server to access the OLE DB data sources.

Related concepts:

v “Instance creation” in the Administration Guide: Implementation

v “Installation overview for DB2 servers (UNIX)” in the Quick Beginnings for
DB2 Servers

v “Installation overview for DB2 servers (Windows)” in the Quick Beginnings
for DB2 Servers

v “Installation overview for a partitioned DB2 server (UNIX)” in the Quick
Beginnings for DB2 Servers

v “Installation overview for partitioned DB2 servers (Windows)” in the Quick
Beginnings for DB2 Servers

v “Fast track to configuring your data sources” on page 85

Related tasks:

v “Mounting the DB2 CD-ROM (HP-UX)” in the Quick Beginnings for DB2
Servers

v “Mounting the DB2 CD-ROM (AIX)” in the Quick Beginnings for DB2 Servers

v “Mounting the CD-ROM (Solaris)” in the Quick Beginnings for DB2 Servers

v “Fast track to setting up your server and database” on page 39
v “Checking the federated server setup” on page 67
v “Creating the federated database” on page 82

Checking the federated server setup

After the federated server is setup, you can avoid potential problems by
checking several key settings:
v Check the data source environment variables (UNIX, and Windows for

Informix data sources).
v Confirm the link between DB2 and the data source client libraries (UNIX

only).
v Check the wrapper library file permissions (UNIX only).

Chapter 3. Setting up the federated server and database 67

v Ensure that the FEDERATED parameter is set to YES (UNIX and Windows).

Checking the federated server setup—details

Checking the data source environment variables

When you setup the federated server, the installation process attempts to set
the environment variables for the Informix, Oracle, Sybase, and Microsoft SQL
Server data sources.
v For Oracle, Sybase, and Microsoft SQL Server data sources, you only need

to check the environment variables if your federated server uses a UNIX
operating system.

v For Informix data sources, you need to check the environment variables on
both UNIX and Windows operating systems.

Prerequisites:

A federated server that is properly setup to access your data sources. This
includes the installation and configuration of any required software, such as:
the client software, DB2 Relational Connect, or DB2 Life Sciences Data
Connect.

Restrictions:

Procedure:

Check to make certain that the environment variables for the data sources you
want access are set in the sqllib/cfg/db2dj.ini file.

The system administrator should check for the data source environment
variables.

The following table lists the valid data source environment variables.

Table 7. Valid data source environment variables.

Data source Valid environment variables

Informix INFORMIXDIR

INFORMIXSERVER

INFORMIXSQLHOSTS

68 DB2 Federated Systems Guide

Table 7. Valid data source environment variables. (continued)

Data source Valid environment variables

Oracle ORACLE_HOME

ORACLE_BASE

ORA_NLS

TNS_ADMIN

Microsoft SQL Server ODBCINI

DJXODBCTRACE

DJX_ODBC_LIBRARY_PATH 7

Sybase SYBASE

SYBASE_OCS

The data source environment variables will not be set in the
sqllib/cfg/db2dj.ini file if you:
v Install the data source client software after the DB2 federated server is

setup.
v Have not installed the data source client software.

To set the environment variables:
1. Install the client software (if necessary).
2. Set the environment variables. The quickest way to set the data source

environment variables is:
v For Informix data sources, run the DB2 server Custom installation again.
v For Oracle, Microsoft SQL Server, and Sybase data sources, run the DB2

Relational Connect installation again.

You can also manually set the environment variables.

Manually setting the Informix environment variables
To manually set the Informix environment variables, follow these steps:
1. Edit the db2dj.ini file located in sqllib/cfg directory. The db2dj.ini file

contains configuration information about the Informix client software
installed on your federated server. If the file does not exist, you can create
a new file with this name. In the db2dj.ini you must specify the fully
qualified path for the variable, otherwise you will encounter errors. Set the
following environment variables as necessary.

INFORMIXDIR

Chapter 3. Setting up the federated server and database 69

Set the INFORMIXDIR environment variable to the directory path
where the Informix Client SDK software is installed; for example:
INFORMIXDIR=/informix/csdk

INFORMIXSERVER

This variable identifies the name of the default Informix server.
This setting must be a valid entry in the sqlhosts file (UNIX) or
the SQLHOSTS registry key (WINDOWS). For example:
INFORMIXSERVER=inf93

Note: Although the Informix wrapper does not use the value of
this variable, the Informix client requires that this variable be set.
The wrapper uses the value of the node server option, which
specifies the Informix database server that you want to access.

INFORMIXSQLHOSTS

If you are using the default path for the Informix sqlhosts file,
you do not need to set this variable. However, if you are using
some other path for the Informix sqlhosts file, then you need to
set this variable to the full path name where the Informix sqlhosts
file resides.
v On UNIX, the default path is $INFORMIXDIR/etc/sqlhosts.
v On Windows, if the SQLHOSTS registry key does not reside on

the local computer, then the INFORMIXSQLHOSTS is the name
of the Windows computer that stores the registry.

An example of setting this variable to another path is:
INFORMIXSQLHOSTS=/informix/csdk/etc/my_sqlhosts

2. To ensure that the environment variables are set in the program, recycle
the DB2 instance. Issue the following commands to recycle the DB2
instance:
db2stop
db2start

Manually setting the Oracle environment variables
To manually set the Oracle environment variables, follow these steps:
1. Edit the db2dj.ini file located in sqllib/cfg directory. The db2dj.ini file

contains configuration information about the Oracle client software
installed on your federated server. If the file does not exist, you can create
a new file with this name. In the db2dj.ini you must specify the fully
qualified path for the variable, otherwise you will encounter errors. Set the
following environment variables as necessary.

ORACLE_HOME

70 DB2 Federated Systems Guide

Set the ORACLE_HOME environment variable to the directory
path where the Oracle client software is installed. Specify the fully
qualified path for the variable,
ORACLE_HOME=<oracle_home_directory>. For example, if the
Oracle home directory is /usr/oracle/8.1.7, the entry in the
db2dj.ini is:
ORACLE_HOME=/usr/oracle/8.1.7

Note: If an individual user of the federated instance has the
ORACLE_HOME environment variable set, federated instance
does not use that setting. The federated instance uses only the
value of ORACLE_HOME that you set in the DB2 profile registry.

ORACLE_BASE

ORACLE_BASE represents the root of the Oracle client directory
tree. If you set the ORACLE_BASE variable when you installed the
Oracle client software, set the ORACLE_BASE environment
variable on the federated server. For example:
ORACLE_BASE=<oracle_root_directory>

ORA_NLS
If your system is using multiple versions of Oracle, you must
ensure that:
v The appropriate ORA_NLS variable is set.
v The corresponding NLS data files for the versions you are using

are available.

The location-specific data is stored in a directory specified by the
ORA_NLS environment variable. For each new version of Oracle,
there is a different ORA_NLS data directory.

Table 8. Oracle ORA_NLS directory name, by version.

Oracle version Environment variable

7.2 ORA_NLS

7.3 ORA_NLS32

8.0, 8.1, 9.0.1 ORA_NLS33

For example, for federated servers that access Oracle 8.1 data
sources, set the ORA_NLS environment variable:
ORA_NLS32=<oracle_home_directory>/ocommon/nls/admin/data>

TNS_ADMIN

The Oracle client expects to locate the tnsnames.ora file in the
/NETWORK/ADMIN directory. On UNIX, the client will also look for

Chapter 3. Setting up the federated server and database 71

the tnsnames.ora file in the /etc directory. If the tnsnames.ora file
is not located in one of these directories, you need to set the
TNS_ADMIN environment variable on the federated server. For
example:
TNS_ADMIN=<tnsnames.ora_directory>

2. Update the .profile file of the DB2 instance with the Oracle environment
variable. You can do this by issuing the following command:
export PATH=$ORACLE_HOME/bin:$PATH
export ORACLE_HOME=<oracle_home_directory>

where <oracle_home_directory> is the directory where the Oracle client
software is installed.

3. Execute the DB2 instance .profile by entering:
. .profile

4. Ensure that the environment variables are set in the program by recycling
the DB2 instance. Issue the following commands to recycle the DB2
instance:
db2stop
db2start

Manually setting the Sybase environment variables
To manually set the Sybase environment variables, follow these steps:
1. Edit the db2dj.ini file located in sqllib/cfg directory. The db2dj.ini file

contains configuration information about the Sybase Open Client client
software installed on your federated server. If the file does not exist, you
can create a new file with this name. In the db2dj.ini you must specify
the fully qualified path for the variable, otherwise you will encounter
errors. Set the following environment variables as necessary:

SYBASE

Set the SYBASE environment variable to the directory path where
the Sybase Open Client software is installed. For example:
SYBASE=<sybase_home_directory>

SYBASE_OCS

For Sybase Open Client Version 12 or later, set the SYBASE_OCS
environment variable to the name of the OCS directory. For
example:
SYBASE_OCS=OCS-<version>_<release>

where:
v <version> is the version number of the Sybase Open Client that

is installed.

72 DB2 Federated Systems Guide

v <release> is the release number of the Sybase Open Client that
is installed.

2. Update the .profile file of the DB2 instance with the Sybase environment
variable. You can do this by issuing the following command:
export PATH=$SYBASE/bin:$PATH
export SYBASE=<sybase_home_directory>

where <sybase_home_directory> is the directory where the Sybase Open
Client software is installed.

3. Execute the DB2 instance .profile by entering:
. .profile

4. To ensure that the environment variables are set in the program, recycle
the DB2 instance. Issue the following commands to recycle the DB2
instance:
db2stop
db2start

Manually setting the Microsoft SQL Server ODBC driver environment
variables
To manually set the Microsoft SQL Server ODBC driver environment
variables, follow these steps:
1. Edit the db2dj.ini file located in sqllib/cfg directory. The db2dj.ini file

contains configuration information about the Microsoft SQL Server ODBC
driver installed on your federated server. If the file does not exist, you can
create a new file with this name. In the db2dj.ini you must specify the
fully qualified path for the variable, otherwise you will encounter errors.
Set the following environment variables as necessary:

ODBCINI

Set the ODBCINI environment variable to the directory path where
the ODBC driver is installed. For example:
ODBCINI=<ODBC_ home_directory>

DJXODBCTRACE

Set the DJXODBCTRACE environment variable to the directory
path where the ODBC trace is installed. For example:
DJXODBCTRACE=<ODBC_trace_directory>

DJX_ODBC_LIBRARY_PATH

Set the directory path to the ODBC library files. For example:
DJX_ODBC_LIBRARY_PATH=<ODBC_home_directory>/lib

where:
v <ODBC_home_directory> is the directory path where the ODBC

driver is installed.

Chapter 3. Setting up the federated server and database 73

DB2LIBPATH

To access to Microsoft SQL Server, you need to set the directory
path to the ODBC library files in the/lib subdirectory. For
example:
DB2LIBPATH=<ODBC_driver_directory>/lib

where:
v <ODBC_driver_directory> is the directory path where the ODBC

driver is installed.

DB2ENVLIST

To use the Connect ODBC driver to access Microsoft SQL Server
data sources, set DB2ENVLIST with a value of LIBPATH. For
example:
DB2ENVLIST=LIBPATH

where:
v <ODBC_driver_directory> is the directory path where the ODBC

driver is installed.
2. To ensure that the environment variables are set in the program, recycle

the DB2 instance. Issue the following commands to recycle the DB2
instance:
db2stop
db2start

Applying the environment variables in a multi-partition instance
configuration
To apply the data source environment variables to the appropriate nodes on
your federated server, use the db2set command. This step is only necessary if
you are running DB2 for UNIX on your federated server and have a
multiple-partition instance configuration. The db2set command displays, sets
or removes DB2 profile variables. The syntax of the command is dependent
upon your database system structure. The db2dj.ini file contains the data
source environment variables. This file was added to the federated server
when you installed Relational Connect.

Applying the environment variables to all nodes: If you want the values in
the db2dj.ini file to apply to all nodes within this instance, issue:
db2set -g DB2_DJ_INI=$HOME/sqllib/cfg/db2dj.ini

Applying the environment variables to the current node only: If you are
using the db2dj.ini file in a non-partitioned database system, or if you want
the db2dj.ini file to apply to the current node only, issue:
db2set DB2_DJ_INI=$HOME/sqllib/cfg/db2dj.ini

74 DB2 Federated Systems Guide

Applying the environment variables to a specific node: If you want the
values in the db2dj.ini file to apply to a specific node, issue:
db2set -i INSTANCEX 3 DB2_DJ_INI=$HOME/sqllib/cfg/node3.ini

where:

INSTANCEX
Is the name of the instance.

3 Is the node number as listed in the db2nodes.cfg file.

node3.ini
Is the modified and renamed version of the db2dj.ini file.

Related tasks:

v “Checking the federated server setup” on page 67
v “Checking the FEDERATED parameter” on page 81

Confirming the link between DB2 and the data source client libraries
(UNIX)

A federated server, using a UNIX operating system, must be link-edited to the
data source client libraries. This applies to the following data sources:
v Informix. The link-edit step is attempted when you install the DB2 server

software using the Custom installation option.
v Oracle. The link-edit step is attempted when you install DB2 Relational

Connect.
v Sybase. The link-edit step is attempted when you install DB2 Relational

Connect.
v Microsoft SQL Server. The link-edit step is attempted when you install DB2

Relational Connect.
v Documentum. The link-edit step is attempted when you install DB2 Life

Sciences Data Connect.
Note: Consult the DB2 Life Sciences Data Connect documentation for
information on linking the federated server to the Documentum data source
client libraries.

The link-edit step creates a wrapper library for each data source that the
federated server will communicate with.

If the data source client software was not installed before you installed the
DB2 server software, the link-edit step will fail. You will then need to perform
the link manually.

Prerequisites:

Chapter 3. Setting up the federated server and database 75

A federated server that is properly setup to access your data sources. This
includes the installation and configuration of any required software, such as:
the client software, DB2 Relational Connect, or DB2 Life Sciences Data
Connect.

Restrictions:

You need root authorization to run the link scripts.

Procedure:

Determine the status of the link between DB2 and the data source client
libraries:
v If the link-edit was successful, the wrapper library file appears in the

directory.
v If the link-edit failed, check the error message file in the directory.
v If the link-edit was not performed, neither the library file or message file

appears in the directory. You will have to manually run the link script.

The following sections contain information on how to confirm the status of
the link-edit, and provide instructions on how to perform the links manually.

Checking for the wrapper library files
The link-edit scripts create the wrapper libraries in specific directories,
depending on the operating system. The following tables list the directory
path for the library file names by data source. If the wrapper library file
appears in the directory, the link-edit was successful.

Informix:

The directory paths and wrapper library file names for Informix.

Table 9. Informix wrapper library locations and file names

Data source Operating
system

Directory path Wrapper library
file

Informix AIX usr/opt/db2_08_01/lib/ libdb2informix.a

HP-UX /opt/IBM/db2/V8.1/lib libdb2informix.sl

Linux /opt/IBM/db2/V8.1/lib libdb2informix.so

Solaris
Operating
Environment

/opt/IBM/db2/V8.1/lib libdb2informix.so

Microsoft SQL Server:

76 DB2 Federated Systems Guide

The directory paths and wrapper library file names for Microsoft SQL Server.

Table 10. Microsoft SQL Server client library locations and file names

Data source Operating
system

Directory path Wrapper library file

Microsoft SQL
Server

AIX usr/opt/db2_08_01/lib/ libdb2mssql3.a

HP-UX /opt/IBM/db2/V8.1/lib libdb2mssql3.sl

Linux /opt/IBM/db2/V8.1/lib libdb2mssql3.so

Solaris
Operating
Environment

/opt/IBM/db2/V8.1/lib libdb2mssql3.so

Oracle:

The directory paths and wrapper library file names for Oracle.

Table 11. Oracle client library locations and file names

Data source Operating
system

Directory path Wrapper library file

Oracle AIX usr/opt/db2_08_01/lib/ libdb2sqlnet.a
(SQLNET)

libdb2net8.a (NET8)

HP-UX /opt/IBM/db2/V8.1/lib libdb2sqlnet.sl
(SQLNET)

libdb2net8.sl (NET8)

Linux /opt/IBM/db2/V8.1/lib libdb2sqlnet.so
(SQLNET)

libdb2net8.so
(NET8)

Solaris
Operating
Environment

/opt/IBM/db2/V8.1/lib libdb2sqlnet.so
(SQLNET)

libdb2net8.so
(NET8)

Sybase:

The directory paths and wrapper library file names for Sybase.

Chapter 3. Setting up the federated server and database 77

Table 12. Sybase client library locations and file names

Data source Operating
system

Directory path Wrapper library
file

Sybase AIX usr/opt/db2_08_01/lib/ libdb2ctlib.a
(CTLIB)

libdb2dblib.a
(DBLIB)

HP-UX /opt/IBM/db2/V8.1/lib libdb2ctlib.sl
(CTLIB)

libdb2dblib.sl
(DBLIB)

Linux /opt/IBM/db2/V8.1/lib libdb2ctlib.so
(CTLIB)

libdb2dblib.so
(DBLIB)

Solaris
Operating
Environment

/opt/IBM/db2/V8.1/lib libdb2ctlib.so
(CTLIB)

libdb2dblib.so
(DBLIB)

Checking the link-edit error message files
If the link-edit fails, there will be errors listed in the error message file in the
library directory. There may be an error message file in the library directory,
even if the link-edit is successful. You need to open the error message file to
determine if the link-edit failed. The link-edit error message file names are
listed in the following table.

Table 13. Link-edit error message file names by data source

Data source Error message file names

Informix djxlinkInformix.out

Microsoft SQL Server djxlinkMssql.out

Oracle djxlinkOracle.out

Sybase djxlinkSybase.out

Manually linking DB2 to the data source client libraries
The link script creates the wrapper libraries on the federated server for the
data source you are setting up. There are several reasons why the link might
fail when you setup the federated server:

78 DB2 Federated Systems Guide

v If the client software is not installed before the link-edit is attempted, then
the link-edit will fail. For example, if you do not install the Informix client
software before you install the DB2 server software, the link-edit will fail.
Likewise, if you do not install the Sybase Open Client software before you
install DB2 Relational Connect, the link-edit will fail. In these situations,
you will have to perform the link manually.

v Check to make sure the version of the data source client is supported. The
latest information is on the product Web sites. For Informix, Oracle, Sybase,
and Microsoft SQL Server, check the DB2 Relational Connect Web site
www.ibm.com/software/data/db2/relconnect/. For Documentum, check
the DB2 Life Sciences Data Connect Web site
www.ibm.com/solutions/lifesciences/. If the version of the data source
client you have installed is not supported, the link-edit will fail. You will
have to install a client version that is supported and then perform the link
manually.

You need root authorization to run the link scripts. The quickest way to link
DB2 to the data source client libraries is:
1. Install and configure the client software on the DB2 federated server (if

necessary).
2. Use the product CDs:

v For Informix data sources, run the DB2 server Custom installation again.
v For Oracle, Sybase, and Microsoft SQL Server data sources, run the DB2

Relational Connect installation again.
v For Documentum data sources, run the DB2 Life Sciences Data Connect

installation again.

Alternatively, you can run the link scripts from the UNIX command prompt.

The following table lists the link script names for each data source.

Table 14. Link scripts by data source

Data source Link script name

Informix djxlinkInformix

Oracle djxlinkOracle

Sybase djxlinkSybase

Microsoft SQL Server djxlinkMssql

For example, if you are setting up the federated server to access Informix data
sources, issue djxlinkInformix script from the UNIX command prompt:
djxlinkInformix

Chapter 3. Setting up the federated server and database 79

If you manually run a link script, you must issue the db2iupdt command on
each DB2 instance to enable federated access to the data sources.

Note: There is another script, the djxlink script, that attempts to create a
wrapper library for every data source that DB2 for UNIX and Windows
supports. If you only have the client software for some of the data sources
installed, you will receive an error message for each of the missing data
sources when you issue the djxlink script.

Once the link is performed, check the permissions on the wrapper libraries
after they are created. Make sure that the libraries can be read and executed
by the DB2 instance owners.

Related concepts:

v “What is Documentum?” in the DB2 Life Sciences Data Connect Planning,
Installation, and Configuration Guide

Related tasks:

v “Checking the federated server setup” on page 67
v “Checking the wrapper library file permissions (UNIX)” on page 80

Checking the wrapper library file permissions (UNIX)

The link-edit step creates a wrapper library for each data source that the
federated server will communicate with. The federated server uses these files
to access the Informix, Oracle, Sybase, Microsoft SQL Server, and
Documentum data sources.

The link-edit step is performed by someone with root authority. When the
library files are created, the file permissions only allow root and users in the
systems group to read and execute the library files. Change the file
permissions so that other users can read and execute the wrapper libraries.

Prerequisites:

A federated server that is properly setup to access your data sources. This
includes the installation and configuration of any required software, such as:
the client software, DB2 Relational Connect, or DB2 Life Sciences Data
Connect.

Restrictions:

Although any user can check the permissions, only a user with root authority
can change the permissions.

Procedure:

80 DB2 Federated Systems Guide

The system administrator should check the permissions on the wrapper
library files to ensure that the DB2 instance owner can read and execute the
files.
1. To check permissions, change to the directory where the wrapper library

was created.

Table 15. Default path for data source wrapper libraries.

Operating system Directory path

AIX usr/opt/db2_08_01/lib/

HP-UX /opt/IBM/db2/V8.1/lib

Linux /opt/IBM/db2/V8.1/lib

Solaris Operating Environment /opt/IBM/db2/V8.1/lib

2. List the statistics for the wrapper library file. The list will show the
permissions, owner, and group for the file. Use the ls command, for
example:
ls -l <filename>

The permissions will probably be -rwxr-x---. These permissions allow only
the owner and users in the group to read and execute the wrapper library.
The owner will probably be root, and the group will probably be system.

3. Use the chmod command to change the permissions so that other users
can read and execute the wrapper library. The proper permissions are:
rwx r-x r-x

To permit other users (such as the DB2 instance owner) to read and
execute the library, use:
chmod o+rx <filename>

Related tasks:

v “Checking the federated server setup” on page 67
v “Confirming the link between DB2 and the data source client libraries

(UNIX)” on page 75

Checking the FEDERATED parameter

The FEDERATED parameter must be set to YES to enable access to the data
sources. It is possible that this parameter was set when you created the DB2
instance. However, it is important to make certain that the FEDERATED
parameter to YES.

Prerequisites:

Chapter 3. Setting up the federated server and database 81

A federated server that is properly setup to access your data sources. This
includes the installation and configuration of any required software, such as:
the client software, DB2 Relational Connect, or DB2 Life Sciences Data
Connect.

Procedure:

To check the FEDERATED parameter setting, issue this command:
GET DATABASE MANAGER CONFIGURATION

This will display all of the parameters and their current settings. Check that
the Federated Database System Support (FEDERATED) parameter is set to
YES.

If the FEDERATED parameter is set to NO, issue this command to change the
setting:
UPDATE DATABASE MANAGER CONFIGURATION USING FEDERATED YES

Note: The CONCENTRATOR parameter and the FEDERATED parameter
cannot be configured to YES at the same time. If the CONCENTRATOR
parameter is set to YES, you must change it to NO before you can set the
FEDERATED parameter.

Related tasks:

v “Checking the federated server setup” on page 67
v “Checking the data source environment variables” on page 68

Creating the federated database

After you setup the federated server, the DB2 instance owner creates a DB2
database on the federated server instance that will act as the federated
database.

You can create the database two ways:
v Through the DB2 Control Center
v Through the DB2 Command Center or DB2 command line processor (CLP).

The advantage of using the DB2 Control Center is that you do not have to key
in each statement and command. It is the easiest way to quickly create a
database.

The steps in this section assume that you are using the DB2 Command Center
or the command line processor (CLP) to create the database.

82 DB2 Federated Systems Guide

Prerequisites:

A federated server that is properly setup to access your data sources. This
includes the installation and configuration of any required software, such as:
the client software, DB2 Relational Connect, or DB2 Life Sciences Data
Connect.

Restrictions:

You need SYSADM or SYSCTRL authority to create a DB2 database.

Procedure:

Create a DB2 database on the federated server instance that will act as the
federated database. For example:
CREATE DATABASE federated

This command:
v Initializes a new database.
v Creates the three initial table spaces.
v Created the system tables.
v Allocates the recovery log.

In a multi-node environment, this command affects all nodes that are listed in
the db2nodes.cfg file. The node from which this command is issued, becomes
the catalog node for the new database.

Related reference:

v “CREATE DATABASE Command” in the Command Reference

Obtaining updates for DB2 and Relational Connect

Take advantage of the latest updates to DB2 and Relational Connect by
installing the most current DB2 FixPak for your operating system.

Keep your DB2 environment running at the latest FixPak level. DB2 FixPaks
contain updates and fixes for problems—Authorized Program Analysis
Reports (APARs)—found during testing at IBM, as well as fixes for problems
that are reported by our customers. A document that is called APARLIST.TXT,
accompanies every FixPak.. The APARLIST.TXT document describes the
problem fixes contained in the FixPak.

Chapter 3. Setting up the federated server and database 83

FixPaks are cumulative. This means that the latest FixPak for any given
version of DB2 contains all of the updates from previous FixPaks for the same
version of DB2.

Procedure:

To obtain the latest FixPak, visit this IBM support Web site:
www.ibm.com/software/data/db2/udb/winos2unix/support/
download.d2w/report

To learn about specific updates to Relational Connect, visit the Relational
Connect Web site: www.ibm.com/software/data/db2/relconnect/

Related reference:

v Appendix J, “Quick reference - useful Internet Web sites” on page 335

84 DB2 Federated Systems Guide

Chapter 4. Overview of configuring access to data sources

This chapter is a concise guide to configuring a federated server and database
to access your data sources:
v It contains information about the basic steps needed to quickly perform the

configuration steps.
v It outlines several optional steps, if you need them, to fine-tune the data

source configuration.
v To help you avoid problems, the end of this chapter contains configuration

troubleshooting advice.

There are individual configuration chapters for each data source. Additionally,
there is an appendix at the end of the book which contains the syntax
required for each SQL statement used to configure the data sources.

Fast track to configuring your data sources

You can accomplish most of the steps required to configure access to a data
source through the DB2® Control Center. Use the DB2 Command Center for
the steps that require a command line. Toggle between these graphical user
interfaces to quickly configure access to a data source. The steps to configure
access are simliar, regardless of the data source. The basic steps and
recommended interface are:

Table 16. The recommended interface and configuration steps

Configuration step Recommended interface Notes

1. Prepare the federated
server for the data source

Client Configuration
Assistant

For DB2 family data
sources: Catalog the node
and the remote database

For Informix, Oracle,
Sybase, Microsoft® SQL
Server data sources: Setup
and test the client
configuration file

2. Create the wrappers DB2 Control Center

3. Create the server
definitions

DB2 Control Center

4. Create the user mappings DB2 Control Center

© Copyright IBM Corp. 1998 - 2002 85

Table 16. The recommended interface and configuration steps (continued)

Configuration step Recommended interface Notes

5. Test the connection to the
data source server

DB2 Command Center Use the Show All Tables
panel in the DB2 Control
Center to verify the
connections.

6. Create the nicknames DB2 Control Center

However, before you can configure access to a data source, you must make
sure that the federated server has been set up properly. It is especially
important that you:
v Link DB2 to the client software. This creates the data source wrapper

libraries on the federated server.
v Set up the data source environment variables.

Related concepts:

v “Object Linking and Embedding Database (OLE DB) Table Functions” in
the Application Development Guide: Building and Running Applications

v “Prepare the federated database” on page 86
v “Optional configuration steps” on page 98

Related tasks:

v “Checking the federated server setup” on page 67
v “Administering federated database systems : Federated Systems help” in

the Help: Federated Systems

v “Contents : Federated Systems help” in the Help: Federated Systems

v “Adding a data source to a federated system : Federated Systems help” in
the Help: Federated Systems

Prepare the federated database

Configuring access to a data source involves supplying the federated database
with information about the data source. The first configuration step is to
prepare the federated database.

For DB2 family data sources:

There are two steps that are required to prepare the federated database to
access DB2® family data sources:

86 DB2 Federated Systems Guide

v Cataloging a node entry in the federated node directory. The federated
server uses this entry to determine the proper access method it will use to
connect to a DB2 data source.

v Catalog the remote database in the federated system database directory.
This identifies the DB2 data source database to which you want to establish
a connection. Use the Client Configuration Assistant (CCA) to catalog the
remote database. For federated servers on UNIX, you can also use the
CATALOG DATABASE command.

Note: Do not use the CATALOG DCS DATABASE command to catalog the
remote database.

You can catalog the node and database either in the DB2 Command Center or
through the command line processor (CLP). For the specific steps, consult the
topic Configuring access to DB2 family data sources.

For Informix, Oracle, and Sybase data sources:

These data sources require a client configuration file to connect to a data
source. This file specifies the location of each data source server and type of
connection (protocol) to that server.

The way you set up this file depends on the data source you are accessing.
For Oracle data sources or Sybase data sources, you can use a utility that
comes with the client software to set up the file. For Informix™ data sources,
you can copy the file from another system or configure the client software on
the DB2 federated server to create the file.

You need to set up a client configuration file on each instance in the DB2
federated server that will connect to the data source.

After you set up the client configuration file, test the connection to the data
source. The test confirms that the data source client software on the federated
server is able to connect to the data source server. If the data source client
software includes a query tool, use this tool to test the connection. For
example, if the data source client is Oracle Version 8, you can use the sqlplus
tool. Query the data source catalog table and a user table for a thorough test.

You can set up the client the client configuration file either in the DB2
Command Center or through the command line processor (CLP). The steps to
create the client configuration file are different for each data source. You will
find specific steps in the configuration topics for each data source.

For Microsoft SQL Server data sources:

Chapter 4. Overview of configuring access to data sources 87

The way you prepare the federated server for Microsoft® SQL Server data
sources depends on the operating system on your federated server.

If your federated server uses Windows® NT or Windows 2000 for its
operating system, you need to confirm that the ODBC System DSN is
properly set up. You should also test the connection to the Microsoft SQL
Server remote server. The test confirms that the ODBC driver on the federated
server is able to connect to the Microsoft SQL Server remote server.

If your federated server runs on AIX, HP-UX, Linux, or Solaris Operating
Environment, you need to update or create an odbc.ini file and test the
connection to the Microsoft SQL Server remote server.

For ODBC data sources:

On your Windows federated server, you need to confirm that the ODBC
System DSN is properly set up. You should also test the connection to the
remote data source. The test confirms that the ODBC driver on the federated
server is able to connect to the remote data source.

For OLE DB data sources:

This data source does not require additional federated database preparation.
The next step is to create the data source wrappers.

Related tasks:

v “Setting up the server to access DB2 family data sources” on page 44
v “Setting up the server to access Informix data sources” on page 47
v “Setting up the server to access Oracle data sources” on page 50
v “Setting up the server to access Sybase data sources” on page 54

Create the wrapper

A wrapper performs many tasks:
v It connects to the data source. Most wrappers use the standard connection

API of the data source.
v It submits SQL to the data source. Most wrappers use the data source

standard APIs for submitting dynamic SQL.
v It receives results sets from the data source. Most wrappers use the data

source standard APIs for receiving results set.
v It responds to federated server queries about the default data type

mappings for a data source.

88 DB2 Federated Systems Guide

v It responds to federated server queries about the default function mappings
for a data source. The wrapper contains information that the federated
server uses to determine if a DB2® function is mapped to data source
function. The wrapper uses these mappings when translating the DB2 SQL
to the data source SQL dialect.

Note: The Microsoft® SQL Server and ODBC wrappers use ODBC APIs.

To define and register a wrapper in the federated database, use DB2 Control
Center. You can also use the CREATE WRAPPER statement in the DB2
Command Center or the command line processor (CLP).

You only need to create one wrapper for each data source that you want to
access. For example, suppose that you want to access three DB2 for z/OS™

database tables, one DB2 for iSeries™ table, two Sybase tables, and one Sybase
view as shown in the following figure. You only need to create two wrappers
— one for the DB2 data source objects and one for the Sybase data source
objects. DB2 for z/OS and DB2 for iSeries will use the DRDA® wrapper, and
Sybase will use the either the CTLIB or DBLIB wrapper.

Chapter 4. Overview of configuring access to data sources 89

For each data source there is a default wrapper name. The syntax of the
CREATE WRAPPER statement is:
CREATE WRAPPER wrapper_name

For example, to create a wrapper to access the DB2 family of products the
command would be:
CREATE WRAPPER DRDA

IBM® recommends that you use the default wrapper name. When you use the
default name to create the wrapper, the federated server automatically picks
up the library associated with the wrapper.

Figure 3. Create one wrapper for each data source, a wrapper for DB2 and a wrapper for Sybase

90 DB2 Federated Systems Guide

Recommendation: Use the default wrapper name. When the wrapper is
created using the default name, the federated server automatically picks up
the default library name associated with the wrapper. If the wrapper name
conflicts with an existing wrapper name in the federated database, you can
substitute the default wrapper name with a name you choose. If you use a
name that is different than the default name, you must include the LIBRARY
parameter in the CREATE WRAPPER statement. An example of the CREATE
WRAPPER statement with the LIBRARY parameter is:
CREATE WRAPPER wrapper_name LIBRARY ’library_name’

You will find the default wrapper names and the library names listed in the
configuration topics for each data source.

Related tasks:

v “Wrappers : Federated Systems help” in the Help: Federated Systems

v “Creating a wrapper: Federated Systems help” in the Help: Federated Systems

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Supply the server definition

After you create the wrapper, you need to identify each data source server
that you want to access. To create a server definition, use the DB2® Control
Center. You can also issue the CREATE SERVER statement in the DB2
Command Center, or the command line processor (CLP). The parameters and
options required with the CREATE SERVER statement, depend on the data
source you want to access.

For DB2 family data sources:

Suppose that you have two DB2 for OS/390® databases. The NEWYORKDB
database is on the NEWYORK390 server, and contains a client table and an
employee table. The LONDONDB database is on the LONDON390 server, and
contains a sales table. You will need to create two server definitions: one for
the NEWYORK390 server and one for the LONDON390 server. You will then
need to create three nicknames, one for each of the tables.

An example of the server definition for the NEWYORK390 server is:
CREATE SERVER NEWYORK TYPE DB2/390
VERSION 5 WRAPPER DRDA
AUTHORIZATION ’STEWART’ PASSWORD ’BONNIE’,
OPTIONS (DBNAME ’NYCLIENTS’)

where:

Chapter 4. Overview of configuring access to data sources 91

NEWYORK
Is a name that you assign to the data source server. This name must
be unique.

TYPE DB2/390
Specifies the type of data source to which you are configuring access.

VERSION 5
Is the version of data source server software that you want to access.

WRAPPER DRDA
Is the wrapper name that you specified in the CREATE WRAPPER
statement.

AUTHORIZATION ’STEWART’
Is the authorization ID at the data source. This value is case-sensitive.

PASSWORD ’BONNIE’
Is the password associated with the authorization ID at the data
source. This value is case-sensitive.

DBNAME ’NYCLIENTS’
Is the name of the database that you want to access. This value is
case-sensitive.

The AUTHORIZATION parameter, the PASSWORD parameter, and the
DBNAME option are required..

For Informix, Sybase, and OLE DB data sources:

Suppose that you have on Sybase database, called SYBDB, located on the
SY6500 server. The SYBDB database contains three objects: two tables and a
view. You will need to create one server definition for the SY6500 server. You
will then need to create three nicknames, one for each of the tables and one
for the view.

An example of the server definition for the SY6500 server is:
CREATE SERVER SYBSERVER TYPE SYBASE
VERSION 12.0 WRAPPER CTLIB
OPTIONS (NODE ’sybnode’ DBNAME ’sybDB’)

where:

SYBSERVER
Is a name that you assign to the data source server. This name must
be unique.

TYPE SYBASE
Specifies the type of data source to which you are configuring access.

92 DB2 Federated Systems Guide

VERSION 12.0
Is the version of data source server software that you want to access.

WRAPPER CTLIB
Is the wrapper name that you specified in the CREATE WRAPPER
statement.

NODE ’sybnode’
Is a name that a data source is defined as an instance to its RDBMS.
This value is case-sensitive.

DBNAME ’sybDB’
Is the name of the database that you want to access. This value is
case-sensitive.

The NODE option and DBNAME option are required. Additionally, Informix™

requires that the IUD_APP_SVPT_ENFORCE server option is set to’N’

For Oracle, ODBC, and Microsoft SQL Server data sources:

The server definition for Oracle, ODBC, and Microsoft® SQL Server data
sources is similar to the ones for Informix, Sybase, and OLE DB data sources.
The only difference is that the DBNAME option is not required.

The NODE option is required.

The concept of a node varies from data source to data source. For relational
data sources, a node reflects a server instance of the data source. In DB2 a
node is equivalent to an instance, which is running copy of DB2.

Additional server options
When you create the server definition, you can specify additional server
options in the CREATE SERVER statement. There are general server options
and data source-specific server options.

For example, when connecting to a data source, the federated server tries to
connect using all possible combinations of upper and lower case for the user
ID and password. This means that the server might make up to nine connect
attempts before successfully connecting to the data source server. These
attempts can slow down connect times. You can prevent this by specifying
values for the FOLD_ID and FOLD_PW server options.

Related tasks:

v “Servers : Federated Systems help” in the Help: Federated Systems

v “Selecting server options: Federated Systems help” in the Help: Federated
Systems

Chapter 4. Overview of configuring access to data sources 93

v “Viewing server options: Federated Systems help” in the Help: Federated
Systems

v “Creating a server: Federated Systems help” in the Help: Federated Systems

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Create the user mappings and test the connection to the data source

After you create the server definition, you need define a user mapping. A user
is an association between your authorization ID to access the federated
database and your authorization ID to access the data source. This association
ensures that distributed requests can be sent to the data source.

To create a user mapping, use the DB2® Control Center. You can also issue the
CREATE USER MAPPING statement in the DB2 Command Center or in the
command line processor (CLP).

Not only do you need to create a user mapping for yourself, but you need to
create user mappings for other groups or individuals who will be accessing
the data source.

Use the CREATE USER MAPPING statement to map the local user ID to the
data source server user ID and password; for example:
CREATE USER MAPPING FOR authorization_name SERVER server_name
OPTIONS (REMOTE_AUTHID ’remote_authorization_name’,
REMOTE_PASSWORD ’remote_password’)

where:

authorization_name
Is the local authorization name that a user or application connects to
the federated database. The local user ID that you are mapping to a
user ID defined at the data source server.

SERVER server_name
Is the name of the data source server that you defined in the CREATE
SERVER statement.

REMOTE_AUTHID ’remote_authorization_name’
Is the remote authorization name that a user or application uses to
connect to at the data source server. This value is case sensitive unless
you set the FOLD_ID server option to ’U’ or ’L’ in the CREATE
SERVER statement.

REMOTE_PASSWORD ’remote_password’
Is the password associated with ’remote_authorization_name’. This value

94 DB2 Federated Systems Guide

is case sensitive unless you set the FOLD_PW server option to ’U’ or
’L’ in the CREATE SERVER statement.

Using Sybase as the data source, an example of the CREATE USER MAPPING
statement is:
CREATE USER MAPPING FOR maria SERVER SYBSERVER
OPTIONS (REMOTE_AUTHID ’mary’, REMOTE_PASSWORD ’day2night’)

Use the DB2 special register USER to map the authorization ID of the person
issuing the CREATE USER MAPPING statement to the data source
authorization ID specified in the REMOTE_AUTHID user option. The
following is an example of the CREATE USER MAPPING statement which
includes the USER special register:
CREATE USER MAPPING FOR USER SERVER SYBSERVER
OPTIONS (REMOTE_AUTHID ’mary’, REMOTE_PASSWORD ’day2night’)

If you attempt to retrieve the REMOTE_PASSWORD associated with a user
mapping from SYSCAT.USEROPTIONS catalog view, the
REMOTE_PASSWORD value is displayed encrypted.

After you create the user mapping, it is a good idea to test the connection to
the data source server. This will ensure that you can establish a connection
that uses the server definition and user mappings you defined. To test the
connection, open a pass-through session and issue a SELECT statement
against the data source system tables. For example, if Sybase is the data
source:
SET PASSTHRU SYBSERVER
SELECT count(*) FROM dbo.sysobjects
SET PASSTHRU RESET

Related tasks:

v “Setting up the server to access DB2 family data sources” on page 44
v “Setting up the server to access Informix data sources” on page 47
v “Setting up the server to access Oracle data sources” on page 50
v “Setting up the server to access Sybase data sources” on page 54
v “Setting up the server to access Microsoft SQL Server data sources” on page

57
v “Setting up the server to access ODBC data sources” on page 62
v “Setting up the server to access OLE DB data sources” on page 65
v “User Mappings : Federated Systems help” in the Help: Federated Systems

v “Creating user mappings: Federated Systems help” in the Help: Federated
Systems

Related reference:

Chapter 4. Overview of configuring access to data sources 95

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v Appendix D, “User options for federated systems” on page 297

Create nicknames for each data source object

After you create the user mapping, identify the data source objects you want
to access. Data source objects are typically database tables, views, and
synonyms (Informix only). Using Life Sciences Data Connect, you can access
other data source objects. For example: BLAST search algorithms, objects and
registered tables in a Documentum Docbase, Microsoft® Excel files (.xls),
table-structured files (.txt), and XML tagged files.

Tables and views that reside in the federated database are local objects. You do
not create nicknames for these objects. You use the actual object name in your
queries.

Remote objects are:
v Tables and views in another DB2® database instance on the federated

server. You need to create nicknames for these objects.
v Data source objects that reside in another data source, such as: Oracle,

Sybase, Documentum, and ODBC. You need to create nicknames for these
objects.

When you submit a distributed request to the federated server, the request
references a data source object by its nickname. Nicknames are mapped to
specific object names at the data source. The mappings eliminate the need to
qualify the nicknames by data source names. The location of the data source
objects are transparent to the client application or end user. Nicknames are not
alternative names for data source objects. They are pointers by which the
federated server references these objects.

For example, if you define the nickname DEPT to represent an Informix™

database table called NFX1.PERSON.DEPT, the statement SELECT * FROM
DEPT is allowed from the federated server. However, the statement, SELECT *
FROM NFX1.PERSON.DEPT is not allowed.

When you create a nickname for a relational data source object, catalog data
from the remote server is retrieved and stored in the federated global catalog.
For non-relational data sources,

SQL Compiler uses this metadata to facilitate access to the data source object.
For example, suppose that a nickname is defined for a table with an index.
The metadata supplied to the global catalog is information related to the
index, such as the name of each column in the index key.

96 DB2 Federated Systems Guide

To create a nickname, use the DB2 Control Center. You can also issue the
CREATE NICKNAME statement in the DB2 Command Center or in the
command line processor (CLP). You can define more than one nickname for
the same data source object.

The following example shows a CREATE NICKNAME statement:
CREATE NICKNAME SYBSALES FOR SYBSERVER."salesdata"."europe"

where:

SYBSALES
Is a unique nickname for the Sybase table or view.

Note: The nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the
schema of the nickname will be the authid of the user creating the
nickname. Nicknames can be 128 characters in length.

SYBSERVER.″salesdata″.″europe″
Is a three-part identifier for the remote data source object.
v SYBSERVER is the name you assigned to the data source server in

the CREATE SERVER statement.
v salesdata is the name of the remote schema to which the object

belongs. This value is case sensitive.
v europe is the name of the remote object that you want to access. This

value is case sensitive.

When you create the nickname, the federated server uses the nickname to test
the connection to the data source. It attempts to query the data source catalog.
If the connection does not work, you will receive an error message.

Including column options when you create a nickname
Suppose that you want to create the nickname INDSALES for a table called
INDONESIA_SALES. The table contains the column POSTAL_CODE with the
data type of CHAR. The column contains only numeric characters. The data
source has a collating sequence that differs from the federated database
collating sequence. Typcially, the federated server would not sort this column
at the data source. However, the POSTAL_CODE column contains only
numeric characters (’0’,’1’,...,’9’). You can indicate this by assigning a value of
’Y’ to the NUMERIC_STRING column option. This gives the DB2 query
optimizer the option of performing the sort at the data source. If the sort is
performed remotely, you can avoid the overhead of porting the data to the
federated server. To provide this information to the federated server, you add
the NUMERIC_STRING column option to the CREATE NICKNAME
statement. For example:
CREATE NICKNAME INDSALES FOR SERVER44."sales"."INDONESIA_SALES"
OPTIONS (POSTAL_CODE NUMERIC_STRING ’Y’)

Chapter 4. Overview of configuring access to data sources 97

For some non-relational data sources, the wrappers do not contain the default
type mappings. If the wrapper does not contain the default type mappings,
the corresponding DB2 for UNIX® and Windows® data types must be
specified for each column of the data source object when the nickname is
created. Each column must be mapped to a particular field or column in the
data source object. For example:
CREATE NICKNAME DRUGDATA1
(DCODE INTEGER,DRUG CHAR(20),MANUFACTURER CHAR(20))
FOR SERVER biochem_lab
OPTIONS (FILE_PATH ’/usr/pat/DRUGDATA1.TXT’,
COLUMN_DELIMITER ’,’, KEY_COLUMN ’Dcode’, VALIDATE_DATA_FILE ’Y’)

Creating a nickname on a nickname
Occasionally, you may need to create a nickname on a nickname. Suppose you
have a federated server using AIX® and a federated server using Windows.
You want to access an Excel spreadsheet from both federated servers.
However, the Excel wrapper is only supported on federated servers that use
Windows. To access the Excel spreadsheet from the AIX federated server, use
these steps:
1. On the Windows federated server, setup and configure the server to access

Excel data sources.
2. Create a nickname for the Excel spreadsheet.
3. On the AIX federated server, setup and configure the server to access DB2

family data sources.
4. Create a nickname for the Excel nickname on the Windows federated

server.

Related tasks:

v “Nicknames : Federated Systems help” in the Help: Federated Systems

v “Filtering tables and views for creating nicknames : Federated Systems
help” in the Help: Federated Systems

v “Filtering tables for creating nicknames: Federated Systems help” in the
Help: Federated Systems

v “Creating nicknames: Federated Systems help” in the Help: Federated Systems

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

Optional configuration steps

The previous sections describe the basic steps necessary to configure the
federated server and database to access your data sources. There are other
actions you can take to customize or tune the data source configuration, such
as:

98 DB2 Federated Systems Guide

v Specify indexes for objects that did not have an index when you originally
configured access to the data source. For example, you would create an
index specification when a table acquires a new index. Likewise, you would
create an index specification if the data source object (such as a view)
typically does not have indexes.

v Define alternative data type mappings, instead of using the default data
type mappings. You can specify a mapping that is used only for a specific
data source object, such as a specific table within a database.

v Define alternative function mappings, instead of using the default function
mappings. This is especially useful when you want to force DB2® to use a
user-defined function at the data source.

Related concepts:

v “Define alternative data type mappings to the federated database” on page
101

v “Specify data source object indexes” on page 99
v “Define alternative function mappings to the federated database” on page

103

Related tasks:

v “Creating an index: Control Center help” in the Help: Control Center

About optional configuration steps

Specify data source object indexes

When a nickname is created for a data source table, the federated server
supplies the global catalog with information about any indexes that the data
source table has. The query optimizer uses this information to expedite the
processing of distributed requests. This information is a set of metadata called
an index specification. The federated server does not create an index
specification if:
v A nickname is created for a table that has no index.
v A nickname is created for a data source object that does not contain indexes

such as a view, Informix™ synonym, table-structured file, Documentum
Docbase file, Excel spreadsheet, BLAST algorithm, or XML tagged file.

v The remote index is on a column of more than 255 bytes, or contains a total
key length in excess of 1024 bytes.

v The remote index is on a LOB column.
v You want to encourage the query optimizer to use a specific nickname as

the inner table of a nested loop join. You can create an index on the joining
column if none exists.

Chapter 4. Overview of configuring access to data sources 99

However, you can supply the necessary index information to the global
catalog, by creating an index specification.

To create an index specification, use the DB2® Control Center. Alternatively,
you can issue the CREATE INDEX statement in the DB2 Command Center or
in the command line processor (CLP). You can also create an index
specification by embedding the CREATE INDEX statement in an application
program.

The syntax for an index specification is:
CREATE UNIQUE INDEX index_name ON nickname
(column_name ASC/DESC) SPECIFICATION ONLY

where:

UNIQUE
UNIQUE is an optional setting and should only be specified if the
data for the index key contains unique values for every row in the
data source object. The uniqueness will not be checked. You may get
incorrect results if you specify an index as UNIQUE when it is not
unique.

index_name
Is the name you give the index.

ON nickname
Is the nickname for the data source object.

(column_name ASC/DESC)
Is the name by which the federated server references the column of
the data source table, and the order (ascending or descending) of the
column value index entries.

SPECIFICATION ONLY
Indicates that an index specification will be created in the federated
global catalog, not an actual table index.

Suppose that you create the nickname jp_sales for a table called
JAPAN_SALES. Any indexes the table had at the time the nickname was
created are logged in the federated global catalog. Later, a new index is added
to the table. The new index uses the MARKUP column for the index key. To
provide the information about this new index to the global catalog, the
CREATE INDEX statement you create is:
CREATE INDEX jp_markup ON jp_sales (MARKUP) SPECIFICATION ONLY

where jp_markup is the name you give the index specification that is created in
the global catalog.

100 DB2 Federated Systems Guide

Suppose that you create the nickname employee for a data source table called
CURRENT_EMP. At the time the nickname was created, there were not
indexes for that table. Later, an index is defined on the CURRENT_EMP table
using the WORKDEPT and JOB columns for the index key. To provide the
information about this new index to the global catalog, the CREATE INDEX
statement you create is:
CREATE INDEX job_by_dept ON employee (WORKDEPT, JOB) SPECIFICATION ONLY

where job_by_dept is the name you give the index specification that is created
in the global catalog. The specification indicates that the index entries are in
ascending order by job title (JOB) within each department (WORKDEPT).

Note: If the data source table is a local table—a table on the federated
server—the CREATE INDEX statement you use will be slightly different.
Substitute the table name for the nickname, and omit the SPECIFICATION
ONLY parameter.

Related tasks:

v “Creating index specifications for data source objects” on page 216
v “Nickname characteristics affecting global optimization” on page 249
v “Creating an index: Control Center help” in the Help: Control Center

Related reference:

v “CREATE INDEX statement” in the SQL Reference, Volume 2

Define alternative data type mappings to the federated database

When you submit a query to the federated server, the server checks for
information about the data type mappings between DB2® and the data source.
The two places the federated server looks for this information are:
v The wrapper. The data source wrapper contains the default data type

mappings.
v The SYSCAT.TYPEMAPPINGS catalog view. This view contains entries you

create that override the default type mappings that are in the wrapper.

Use the CREATE TYPE MAPPING statement to add alternative data type
mapping entries into the SYSCAT.TYPEMAPPINGS catalog view.

With the CREATE TYPE MAPPING statement, you can indicate what the new
mapping applies to:
v All data sources of a specific type. For example, all Oracle data sources.
v A specific data source server. For example, a server defined as ORASERVER

to the federated database.

Chapter 4. Overview of configuring access to data sources 101

v A specific data source object. For example, a specific table that the
Marketing department in your organization uses.

v All data sources of a specific type and version. For example, all Oracle 8.0.3
data sources.

You can issue the CREATE TYPE MAPPING statement in the DB2 Command
Center or in the command line processor (CLP). You can also embed the
CREATE TYPE MAPPING statement in an application program. The DB2
Control Center does not support creating or modifying data type mappings.

For example, by default the Oracle data type NUMBER maps to the DB2 data
type DOUBLE, a floating decimal data type. Suppose that you want all Oracle
tables and views that use the Oracle data type NUMBER to map to DB2
DECIMAL (8,2). The CREATE TYPE MAPPING statement would be:
CREATE TYPE MAPPING MY_ORACLE_DEC FROM SYSIBM.DECIMAL (8,2)
TO SERVER TYPE ORACLE TYPE NUMBER

where:

MY_ORACLE_DEC
is the name you give to the type mapping. The name cannot duplicate
a type mapping name already described in the catalog. It must be
unique.

FROM SYSIBM.DECIMAL (8,2)
is the local DB2 schema and data type. If the length or precision (and
scale) are not specified, then these values are determined from the
source data type.

TO SERVER TYPE ORACLE
identifies the type of data source.

TYPE NUMBER
is the remote data source type that you are mapping to the local data
type. This must be a built-in data type. User-defined types are not
allowed. If the type has a short and long form, specify the short form.

Related tasks:

v “Modifying default data type mappings” on page 208

Related reference:

v Appendix H, “Default forward data type mappings” on page 307

102 DB2 Federated Systems Guide

Define alternative function mappings to the federated database

When you submit queries to the federated server which contain one or more
functions, the server checks for information about the mappings between the
DB2® functions and the data source functions. The federated server checks
two places for this information:
v The wrapper. The data source wrapper contains the default function

mappings.
v The SYSCAT.FUNCMAPPINGS catalog view. This view contains entries you

create that override or augment the default function mappings that are in
the wrapper.

The function mappings are one of several important inputs to the pushdown
analysis performed by the DB2 SQL Compiler. The SQL Compiler considers
whether the data source can perform a particular type of SQL function or
operation. If the function does not have a mapping, the function will no be
sent to the data source for processing.

Use the CREATE FUNCTION MAPPING statement to add alternative
function mapping entries into the SYSCAT.FUNCMAPPINGS and
SYSCAT.FUNCMAPOPTIONS catalog views. With the CREATE FUNCTION
MAPPING statement, you can indicate what the new mapping applies to:
v All data sources of a specific type. For example, all Informix™ data sources.
v A specific data source object. For example, a specific view that all

employees in your organization use.
v All data sources of a specific type and version. For example, all Informix 9

data sources.

You can issue the CREATE FUNCTION MAPPING statement in the DB2
Command Center or in the command line processor (CLP). You can also
embed the CREATE FUNCTION MAPPING statement in an application
program. The DB2 Control Center does not support creating or modifying
function mappings.

When you create a function mapping, you are mapping a data source function
and a counterpart function at the federated database. When no DB2
counterpart exists, or when you want to force the federated server to use the
data source function, you can create a function template to act as the
counterpart.

The DB2 counterpart function can be either a complete function or a function
template. A function template is a DB2 function you create for the purpose of
forcing the federated server to invoke a data source function. However, unlike

Chapter 4. Overview of configuring access to data sources 103

a regular function, a function template has no executable code. The function
template is created with the CREATE FUNCTION statement using the AS
TEMPLATE parameter, for example:
CREATE FUNCTION BONUS () RETURNS DECIMAL(8,2) AS TEMPLATE

where:

BONUS ()
is the name you give to the function.

RETURNS DECIMAL(8,2)
is the data type of the output.

AS TEMPLATE
indicates this is a function template.

After you create a function template, you must then create the function
mapping between the template and the data source function. When the
federated server receives queries specifying the function template, it will
invoke the data source function. A function mapping is created using the
CREATE FUNCTION MAPPING statement, for example:
CREATE FUNCTION MAPPING MY_INFORMIX_FUN FOR BONUS ()
SERVER TYPE INFORMIX OPTIONS (REMOTE_NAME ’BONUS’)

where:

MY_INFORMIX_FUN
is the name you give to the function mapping. The name cannot
duplicate a function mapping name already described in the DB2
catalog. It must be unique.

FOR BONUS ()
is the local DB2 function template name. Include data type input
parameters in parenthesis.

SERVER TYPE INFORMIX
identifies the type of data source which contains the function to which
you want to map.

OPTIONS (REMOTE_NAME ’BONUS’)
is an option that identifies the name of the remote data source
function that you are mapping to the local DB2 function.

Most function mapping options provide information to the query optimizer
about the potential cost of executing a function at the data source. Suppose
that pushdown analysis determines that either the data source function or the
DB2 function can be called. The statistical information you provide through

104 DB2 Federated Systems Guide

the function mapping options helps the query optimizer to compare the
estimated cost of executing the data source function with the estimated cost of
executing the DB2 function.

Function mapping options provide information such as:
v Name of the remote data source function.
v The estimated number of instructions processed the first and last time that

the data source function is invoked.
v Estimated number of I/Os performed the first and last time that the data

source function is invoked.
v Estimated number of instructions processed per invocation of the data

source function.

Related concepts:

v “Function mappings and function templates” on page 20
v “Pushdown analysis” on page 233

Related tasks:

v “Creating and modifying function mappings” on page 223

Related reference:

v Appendix F, “Function mapping options for federated systems” on page 301

Troubleshoot the data source configuration

There are several steps you can take to avoid set up problems and
configuration problems. Probably most significant is to test the connection to
the data source between key steps:
v After you install and configure the data source client software, test the

connection to the data source. This will isolate configuration problems to
the client software set up and the DB2® custom installation. If you cannot
connect to the data source using the client software, check the following:
– The data source server is running.
– The appropriate listener (for instance TCPIP listener) is configured and

running.
– The user ID and password in the user mapping can access the data

source.
– The federated server can access the data source server at the network

software layer. For instance, for TCP/IP, ping the data source host
system from the federated server.

– The data source client configuration information at the federated server
file matches the corresponding configuation information at the data

Chapter 4. Overview of configuring access to data sources 105

source. For instance, the information in the Oracle tnsnames.ora file on
federated server matches the information in the listener.ora file at Oracle
data source.

– Logged into the federated server as the DB2 instance owner, connect to
the data source using the data source cleint software. Specify in the
connetion the user ID and password of the user mpaping to the data
source.

– Check that the environment variables are appropriate for federated
server to use the client software and access the client configuration file.
These variables include the: system environment variables, db2dj.ini
variables (on UNIX), and db2set variables.

v After you create the server definitions and the user mappings, test the
connection to the data source. This will isolate configuration problems to
the server definitions and the user mappings.

v When you create the nicknames, the federated server will attempt to
connect to the data source object. This isolates configuration problems to
the nickname.

Related concepts:

v “Pushdown analysis” on page 233

Related tasks:

v “Tuning and troubleshooting the configuration to DB2 family data sources”
on page 115

v “Tuning and troubleshooting the configuration to Informix” on page 125
v “Tuning and troubleshooting the configuration to Microsoft SQL Server data

sources” on page 155
v “Tuning and troubleshooting the configuration to Oracle data sources” on

page 135
v “Tuning and troubleshooting the configuration to Sybase data sources” on

page 145
v “Global optimization” on page 246

106 DB2 Federated Systems Guide

Chapter 5. Configuring access to DB2 family data sources

This chapter explains how to configure your federated server to access data
stored in DB2 family databases — DB2 for UNIX and Windows; DB2 for z/OS
and OS/390; DB2 for iSeries; and DB2 Server for VM and VSE. It contains two
sections:
v Adding DB2 family data sources to a federated server
v Tuning and troubleshooting the configuration to DB2 family data sources

Adding DB2 family data sources to a federated server

Configuring the federated server to access DB2 data sources involves
supplying the server with information about the DB2 data sources and objects
you want to access. You can configure access to DB2 data sources two ways
v Through the DB2 Control Center
v Through the DB2 Command Center or command line processor (CLP)

The advantage of using the DB2 Control Center is that you do not have to key
in each statement and command. It is the easiest way to quickly configure
access to DB2 data sources. There are a few configuration tasks that you
cannot accomplish through the DB2 Control Center:
v Catalog the node
v Catalog the remote database
v Testing the connection to the data source server which validates the server

definition and user mappings.
v Adding or dropping column options.

The steps in this section assume that you are using the DB2 Command Center
or the command line processor (CLP) to configure access to DB2 data sources.

Prerequisites:

v A federated server and database that are setup to access DB2 family data
sources.

v The proper variables setup. This includes: system environmetn variables,
db2dj.ini variables (UNIX only), and DB2 Profile Registry (db2set) variables.

The steps to accomplish these tasks are discussed in Setting up a federated
server and database.

Restrictions:

© Copyright IBM Corp. 1998 - 2002 107

In Version 8.1, you can not create a nickname for a DB2 data source alias.

Procedure:

To add a DB2 data source to a federated server, you need to:
1. Catalog the node
2. Catalog the remote database
3. Create the wrapper
4. Create the server definition and set the server options
5. Create the user mappings
6. Test the connection to the DB2 server
7. Create the nicknames for tables and views

These steps are explained in detail in this section. Operating system-specific
differences are noted where they occur.

Step 1: Catalog a node entry in the federated node directory
To point to the location of the DB2 data source, you catalog an entry in the
node directory of the federated server. This entry is used by the federated
server to determine the proper access method it will use to connect to a DB2
data source. For example, if TCP/IP is your communication protocol issue the
CATALOG TCP/IP NODE command:
CATALOG TCPIP NODE DB2NODE REMOTE SYSTEM42 SERVER DB2TCP42

where:

DB2NODE
Is a name that you assign to the node that you are cataloging.

REMOTE SYSTEM42
Is the host name of the system where the data source resides.

SERVER DB2TCP42
Is the service name or primary port number of the server database
manager instance. If a service name is used, it is case sensitive.

If SNA is your communication protocol, issue the CATALOG APPC NODE
command:
CATALOG APPC NODE DB2NODE REMOTE DB2CPIC SECURITY PROGRAM

where:

DB2NODE
is a name that you assign to the node that you are cataloging.

REMOTE DB2CPIC
is the SNA partner logical unit (LU) name of the remote partner node.

108 DB2 Federated Systems Guide

SECURITY PROGRAM
specifies that both a user name and a password are to be included in
the allocation request sent to the partner LU.

Step 2: Catalog the remote database in the federated system database
directory

You inform the federated server which DB2 data source database to connect to
by cataloging the remote database in the federated system database directory.
Use the Client Configuration Assistant (CCA) to catalog the remote database.
For federated servers on UNIX , you can also use the CATALOG DATABASE
command.

Note: Do not use the CATALOG DCS DATABASE command to catalog the
remote database.

An example of cataloging the remote database using the CATALOG
DATABASE command is:
CATALOG DATABASE DB2DB390 AS CLIENTS390 AT NODE DB2NODE AUTHENTICATION SERVER

where:

DB2DB390
Is a name of the database you are cataloging.

AS CLIENTS390
Is an alias for the database being cataloged.

AT NODE DB2NODE
Is the name of the node you specified when cataloging the node entry
in the node directory.

AUTHENTICATION SERVER
Specifies that authentication takes place on the DB2 data source node.

Step 3: Create the wrapper
To specify the wrapper that will be used to access DB2 data sources, use the
CREATE WRAPPER statement. Every DB2 Server Edition (Enterprise,
Personal, Workgroup) includes one wrapper for the DB2 family called DRDA.
The following example shows a CREATE WRAPPER statement:
CREATE WRAPPER DRDA

Recommendation: Use the default wrapper name (DRDA). When you create the
wrapper using one of the default names, the federated server automatically
picks up the default library name associated with that wrapper name. If the
wrapper name conflicts with an existing wrapper name in the federated
database, you can substitute the default wrapper name with a name you
choose. If you use a name that is different than one of the default names, you
must include the LIBRARY parameter in the CREATE WRAPPER statement.

Chapter 5. Configuring access to DB2 family data sources 109

Suppose that you have a federated server running on AIX and you decide to
use a wrapper name that is not one of the default names. The CREATE
WRAPPER statement that you need to use is:
CREATE WRAPPER mywrapper LIBRARY ’libdb2drda.a’

where mywrapper is the name you give to the wrapper instead of using the
default wrapper name.

The wrapper library names for DB2 are:

Table 17. DB2 wrapper library names

Operating system on your federated
server

Wrapper library name

AIX libdb2drda.a

Solaris Operating Environment libdb2drda.so

HP-UX libdb2drda.sl

Linux libdb2drda.so

Windows NT and Windows 2000 db2drda.dll

Step 4: Create the server definition
In the federated database, you must define each DB2 server that you want to
access. When you create the server definition, the federated server connects to
the DB2 server and binds packages to the database. Because the information
for authorization and password are not stored in the federated global catalog,
you must include them in the server definition You create a server definition
using CREATE SERVER statement. For example:
CREATE SERVER DB2SERVER TYPE DB2/ZOS VERSION 5 WRAPPER DRDA
AUTHORIZATION "spalten" PASSWORD "db2guru" OPTIONS (DBNAME ’CLIENTS390’)

where:

DB2SERVER
Is a name you assign to the DB2 database server. This name must be
unique. Duplicate server names are not allowed.

TYPE DB2/ZOS
Specifies the type of data source server to which you are configuring
access. See the list of valid server types in Valid server types in SQL
Statements.

VERSION 5
Is the version of the DB2 database server that you want to access.
v The DB2 for UNIX and Windows the supported versions are 6, 7.1,

7.2, 8.1.

110 DB2 Federated Systems Guide

v The DB2 for z/OS and OS/390 the supported versions are 5 (or
later).

v The DB2 for iSeries the supported versions are 4 (or later)

WRAPPER DRDA
The name you specified in the CREATE WRAPPER statement.

AUTHORIZATION ″spalten″
The authorization ID at the data source. This ID must have BINDADD
authority at the data source. This value is case-sensitive.

PASSWORD ″db2guru″
The password associated with the authorization ID at the data source.
This value is case-sensitive.

DBNAME ’CLIENTS390’
The alias for the DB2 database that you want to access. You defined
this alias when you cataloged the database using the CATALOG
DATABASE command. This value is case-sensitive.

Although the database name is specified as an option in the CREATE
SERVER statement, it is required for DB2 data sources.

When you issue the CREATE SERVER statement, it will test the connection to
the DB2 data source server. If you receive an error, you will need to packages
to the database manually

Optional: Set additional server options
When you create the server definition, you can specify additional server
options in the CREATE SERVER statement. There are general server options
and data source-specific server options.

With DB2 data sources, a useful option to set is PUSHDOWN. If you set
PUSHDOWN to ’Y’, the federated server will consider letting the DB2 data
source evaluate operations. This is the default setting. If you set PUSHDOWN
to ’N’, the federated server will only retrieve columns from the remote data
source and will not let the data source evaluate other operations, such as
joins.

An example of the CREATE SERVER statement with this server options is:
CREATE SERVER DB2SERVER TYPE DB2/ZOS VERSION 5 WRAPPER DRDA
AUTHORIZATION "spalten" PASSWORD "db2guru"
OPTIONS (PUSHDOWN ’N’)

Once the server definition is created, use the ALTER SERVER statement to
apply additional server options.

Chapter 5. Configuring access to DB2 family data sources 111

Step 5: Create the user mappings
When the you request access to a DB2 server, access is granted if the
authorization IDs are the same between the federated database and the DB2
server. If a user’s authorization ID to access the federated database differs
from the user’s authorization ID to access a data source, you need to define
an association, a user mapping, between the two authorization IDs so that
distributed requests can be sent to the data source.

Note: The REMOTE_AUTHID is the connect authorization ID, not the bind
authorization ID.

Use the CREATE USER MAPPING statement to map the local user ID to the
DB2 server user ID and password; for example:
CREATE USER MAPPING FOR DB2USER SERVER DB2SERVER
OPTIONS (’REMOTE_AUTHID ’db2admin’, REMOTE_PASSWORD ’day2night’)

where:

DB2USER
Is the local user ID that you are mapping to a user ID defined at a
DB2 family data source server.

SERVER DB2SERVER
Is the name of the DB2 family data source server that you defined in
the CREATE SERVER statement.

REMOTE_AUTHID ’db2admin’
Is the connect authorization user ID at the DB2 family data source
server to which you are mapping DB2USER. This value is case
sensitive unless you set the FOLD_ID server option to ’U’ or ’L’ in the
CREATE SERVER statement.

REMOTE_PASSWORD ’day2night’
Is the password associated with ’db2admin’. This value is case sensitive
unless you set the FOLD_PW server option to ’U’ or ’L’ in the
CREATE SERVER statement.

You can use the DB2 special register USER to map the authorization ID of the
person issuing the CREATE USER MAPPING statement to the data source
authorization ID specified in the REMOTE_AUTHID user option. The
following is an example of the CREATE USER MAPPING statement which
includes the USER special register:
CREATE USER MAPPING FOR USER SERVER DB2SERVER
OPTIONS (’REMOTE_AUTHID ’db2admin’, REMOTE_PASSWORD ’day2night’)

Step 6: Test the connection to the data source server
Test the connection to the DB2 server to ensure that you can establish a
connection, using the server definition and user mappings you defined. Open

112 DB2 Federated Systems Guide

a pass-through session and for DB2 for z/OS and OS/390, issue a SELECT
statement against the DB2 system tables. For example:
SET PASSTHRU server_name
SELECT count(*) FROM sysibm.systables
SET PASSTHRU RESET

For DB2 for iSeries, issue a SELECT statement against the DB2 system tables.
For example:
SET PASSTHRU server_name
SELECT count(*) FROM qsys2.systables
SET PASSTHRU RESET

If the SELECT returns a count, then your server definition and user mapping
are set up properly. If the SELECT returns an error, you may have to drop
and recreate or modify the server definition or user mapping.

If the SELECT returns a count, then your server definition and user mapping
are set up properly. If the SELECT returns an error, you may have to:
v Check the remote server to make sure it is started.
v Check the listener on the remote server to make sure that it is configured

for incoming connections.
v Check your user mapping to make sure that the settings for the

remote_authid and remote_password options are valid for connections to
the DB2 server.

v Check the DB2 catalog entries for node and database.
v Check your DB2 federated variables to make sure that they are correct for

working with the remote DB2 server. This includes the system environment
variables, db2dj.ini variables, and DB2 Profile Registry (db2set) DB2COMM
variable.

v Check your server definition and possibly drop it and create it again.
v Check your user mapping and possibly alter it or create another if

necessary.

Step 7: Create the nicknames for the tables and views
The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a
nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the optimizer is read from the data source catalogs and put into the
global catalog on the federated server. Because some or all of the data source
catalog information might be used by the optimizer, it is advisable to update
statistics (using the data source command equivalent to RUNSTATS) at the
data source before you create a nickname.

Chapter 5. Configuring access to DB2 family data sources 113

Use the CREATE NICKNAME statement to assign a nickname to a view or
table located at your DB2 family data source. You will use these nicknames,
instead of the names of the data source objects, when you query the DB2
family data source. Nicknames can be up to 128 characters in length. The
following example shows a CREATE NICKNAME statement:
CREATE NICKNAME DB2SALES FOR DB2SERVER.SALESDATA.EUROPE

where:

DB2SALES
Is a unique nickname used to identify the DB2 table or view.

Note: the nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the
schema of the nickname will be the authid of the user creating the
nickname.

DB2SERVER.SALESDATA.EUROPE
Is a three-part identifier for the remote object.
v DB2SERVER is the name you assigned to the DB2 database server

in the CREATE SERVER statement.
v SALESDATA is the name of the remote schema to which the table

or view belongs. This value is case sensitive.
v EUROPE is the name of the remote table or view which you want

to access.

Repeat this step for each DB2 table or view that you want to create nicknames
for. When you create the nickname, the federated server will use the
connection to query the data source catalog. This query tests your connection
to the data source using the nickname. If the connection does not work, you
will receive an error message.

Related tasks:

v “Fast track to setting up your server and database” on page 39
v “Tuning and troubleshooting the configuration to DB2 family data sources”

on page 115
v “Setting up the server to access DB2 family data sources” on page 44

Related reference:

v “CATALOG DATABASE Command” in the Command Reference

v “CATALOG DCS DATABASE Command” in the Command Reference

v “CATALOG TCP/IP NODE Command” in the Command Reference

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v Appendix C, “Server options for federated systems” on page 287

114 DB2 Federated Systems Guide

Tuning and troubleshooting the configuration to DB2 family data sources

Once you have set up the configuration to DB2 data sources, you may want to
modify the configuration to improve performance. For example, you might
want to set the DB2_DJ_COMM environment variable to improve
performance when the DB2 data source is accessed.

Improving performance by setting the DB2_DJ_COMM environment
variable (UNIX)

If you find that it takes an inordinate amount of time to access the DB2 data
source server, you can improve the performance by setting the
DB2_DJ_COMM environment variable to load the wrapper when the
federated server initializes rather than when you attempt to access the data
source.

Procedure:

To set the DB2_DJ_COMM environment variable:
1. Set the DB2_DJ_COMM environment variable to the wrapper library that

corresponds to the wrapper that you specified. Use the commands in the
following table to set the DB2_DJ_COMM environment variable.

Table 18. Commands to set the DB2_DJ_COMM variable for DB2 data sources

Federated server operating
system

Command

AIX DB2_DJ_COMM= ’libdb2drda.a’

Solaris DB2_DJ_COMM= ’libdb2drda.so’

HP-UX DB2_DJ_COMM= ’libdb2drda.sl’

Linux DB2_DJ_COMM= ’libdb2drda.so’

Windows NT and Windows
2000

DB2_DJ_COMM= ’db2drda.dll’

Use the db2set command to set the DB2_DJ_COMM environment variable.
For example, if the federated server operating system is AIX, the
command would be:
db2set DB2_DJ_COMM=’libdb2drda.a’

2. Then export the DB2_DJ_COMM environment variable:
export DB2_DJ_COMM

3. To ensure that the environment variables are set in the program, recycle
the DB2 instance. When you recycle the instance, you refresh the DB2
instance to accept the changes that you made. Issue the following
commands to recycle the DB2 instance:

Chapter 5. Configuring access to DB2 family data sources 115

db2stop
db2start

116 DB2 Federated Systems Guide

Chapter 6. Configuring access to Informix data sources

This chapter explains how to configure your federated server to access data
stored in Informix databases. It contains two sections:
v Adding Informix data sources to a federated server
v Tuning and troubleshooting the configuration to Informix data sources

Adding Informix data sources to a federated server

Configuring the federated server to access Informix data sources involves
supplying the server with information about the Oracle data sources and
objects you want to access. You can configure access to Informix data sources
two ways:
v Through the DB2 Control Center
v Through the DB2 Command Center or command line processor (CLP)

The advantage of using the DB2 Control Center is that you do not have to key
in each statement and command. It is the easiest way to quickly configure
access to Informix data sources. There are a few configuraton tasks that can
not be accomplished through the DB2 Control Center:
v Setting up and testing the Informix client configuration file.
v Testing the connection to the Informix server to validate the server

definition and user mappings.
v Adding or dropping column options.

The steps in this section assume that you are using the DB2 Command Center
or the command line processor (CLP) to configure access to Informix data
sources.

Prerequisites:

v A federated server and database that are setup to access Informix data
sources.

v The Informix Client SDK software installed and configured on the federated
server.

v The proper variables setup. This includes: system environmetn variables,
db2dj.ini variables (UNIX only), and DB2 Profile Registry (db2set) variables.

The steps to accomplish these tasks are discussed in Setting up a federated
server and database.

© Copyright IBM Corp. 1998 - 2002 117

Procedure:

To add an Informix data source to a federated server:
1. Set up and test the Informix client configuration file.
2. Create the wrapper.
3. Create the server definition and set the server options.
4. Create the user mappings.
5. Test the connection to the Informix server.
6. Create nicknames for Informix tables, views, and synonyms.

These steps are explained in detail in this section. The operating
system-specific differences are noted where they occur.

Step 1: Set up and test the client configuration file
The client configuration file is used to connect to Informix, using the client
libraries that are installed on the federated server. This file specifies the
location of each Informix database server and type of connection (protocol) for
the database server.
v On Unix the default name is $INFORMIXDIR/etc/sqlhosts. The sqlhosts file

resides on each installation of the Informix client SDK.
v On Windows the default location of the sqlhosts registry is the local

computer.

The format of sqlhosts is described in the Administrator’s Guide for Informix
Dynamic Server.

There are several ways to create sqlhosts file or registry. You can copy it from
another system that has Informix Connect or Informix Client SDK installed.
You can also configure the Informix Client SDK on the federated server to
connect to an Informix server, which creates the sqlhosts file or registry. The
federate server will use the sqlhosts that is in the Informix SDK directory or
the Windows registry.

The location of the sqlhosts file or registry depends on the operating system
you are running on your federated server.
v On UNIX, the sqlhosts file is located in the $INFORMIXDIR/etc/sqlhosts

directory.
v On Windows, the sqlhosts information is kept in the following key in the

Windows registry:
HKEY_LOCAL_MACHINE\SOFTWARE\INFORMIX\SQLHOSTS

118 DB2 Federated Systems Guide

Test the connection to ensure that the client software is able to connect to the
Informix server. If the Informix dbaccess tool is on the federated server, use
this tool to test the connection. Otherwise, run the Informix demo program to
test the client set up.

Setting a different location for the sqlhosts file or registry
On Unix, if the sqlhosts file is not in the default location, then you must set
environment variable INFORMIXSQLHOSTS to the fully-qualified name of the
sqlhosts file. On Windows, if the sqlhosts registry is not on the local
computer, then you must set environment variable INFORMIXSQLHOSTS to
the name of the Windows computer that stores the registry.

To ensure that the environment variable is set in the program, recycle the DB2
instance. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

Step 2: Create the wrapper
To specify the wrapper that will be used to access Informix data sources, use
the CREATE WRAPPER statement. Every DB2 Server Edition (Enterprise,
Personal, Workgroup) includes one wrapper for Informix called INFORMIX. The
following example shows a CREATE WRAPPER statement:
CREATE WRAPPER INFORMIX

Recommendation: Use the default wrapper name INFORMIX. When the
wrapper is created using the default name, the federated server automatically
picks up the default library name associated with the wrapper. If the wrapper
name conflicts with an existing wrapper name in the federated database, you
can substitute the default wrapper name with a name you choose. If you use
a name that is different than the default name, you must include the
LIBRARY parameter in the CREATE WRAPPER statement. Suppose that you
have a federated server that is running AIX and you decide to use a wrapper
name that is not one of the default names. An example of the CREATE
WRAPPER statements for INFORMIX is:
CREATE WRAPPER mywrapper LIBRARY ’libdb2informix.a’

The wrapper library names for Informix are:

Table 19. Informix wrapper library names

Operating system on your federated
server

Wrapper library name

AIX libdb2informix.a

HP-UX libdb2informix.sl

Linux libdb2informix.so

Chapter 6. Configuring access to Informix data sources 119

Table 19. Informix wrapper library names (continued)

Operating system on your federated
server

Wrapper library name

Solaris Operating Environment libdb2informix.so

Windows NT and Windows 2000 db2informix.dll

Step 3: Create the server definition
In the federated database, you must define each Informix server that you
want to access. You create a server definition using CREATE SERVER
statement. For example:
CREATE SERVER asia TYPE informix VERSION 9 WRAPPER INFORMIX
OPTIONS (NODE ’abc’, DBNAME ’sales’, IUD_APP_SVPT_ENFORCE ’N’)

where:

asia Is a name you assign to the Informix database server. This name must
be unique. Duplicate server names are not allowed.

TYPE informix
Specifies the type of data source server to which you are configuring
access. For the Informix wrapper, the server type must be informix.

VERSION 9
Is the Informix database server version that you want to access. The
supported Informix versions are 7, 8, and 9.

WRAPPER INFORMIX
The name you specified in the CREATE WRAPPER statement.

NODE ’abc’
The name of the node where Informix database server resides. Obtain
the node name from the sqlhosts file. This value is case-sensitive.

Although the node name is specified as an option in the CREATE
SERVER statement, it is required for Informix data sources.

DBNAME ’sales’
The name of the Informix database that you want to access. This
value is case-sensitive.

Although the database name is specified as an option in the CREATE
SERVER statement, it is required for Informix data sources.

IUD_APP_SVPT_ENFORCE ’N’
Specifies whether DB2 federated system should enforce detecting or
building of application savepoint statements. Informix does not
support application savepoint statements. When set to ’N’, the
federated server will allow INSERT, UPDATE, or DELETE statements
on nicknames for Informix data sources.

120 DB2 Federated Systems Guide

Although the application savepoint enforcment is specified as an
option in the CREATE SERVER statement, it is required for Informix
data sources.

Locating the node name
You must define the node name in the Informix sqlhosts file (see step 1).
Although the node_name is specified as an option in the CREATE SERVER
SQL statement, it is required for Informix data sources. This is an example of
a sqlhosts file:
inf724 onsoctcp anaconda inmx724
inf731 onscotcp boa ifmx731
inf92 onsoctcp python ifmx92

The first value in each line is the node_name, such as inf724.

The second value in each line is the nettype, or type of connection. onscotcp
indicates this is a TCP/IP connection.

The third value in each line is the host name, such as anaconda, boa, and
python.

The forth value in each line is the service name, such as inmx724. The service
name field depends on nettype listed in the second value.

For more information about the format of this file and the meaning of these
fields, see the Informix manual Administrators Guide for Informix Dynamic
Server.

Optional: Set additional server options
When you create the server definition, you can specify additional server
options in the CREATE SERVER statement. There are general server options
and data source-specific server options.

When the federated server connects to a data source, it tries to connect using
all possible combinations of upper and lower case for the user ID and
password. The server might make up to nine connect attempts before
successfully connecting to the data source server. These attempts can slow
down connect times and may result in the user ID being logged out. You can
prevent this by specifying values for the FOLD_ID and FOLD_PW server options.
For example, you can set the FOLD_ID and FOLD_PW server options to ’N’ (do
not fold the user ID or password). If you establish these settings, then you
need to always specify the user ID and password in the correct case. The
advantage to setting these options to ’N’ is that when an invalid user ID or
password is specified, the wrapper won’t keep trying the various
combinations. This reduces the chance of exceeding the maximum number of
failed login attempts and the ID getting locked out.

Chapter 6. Configuring access to Informix data sources 121

An example of the CREATE SERVER statement with these server options is:
CREATE SERVER asia TYPE informix VERSION 9 WRAPPER INFORMIX
OPTIONS (NODE ’abc’, DBNAME ’sales’, FOLD_ID ’N’, FOLD_PW ’N’)

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

Step 4: Create the user mappings
When you attempt to access an Informix server, access is granted if the
authorization IDs are the same between the federated database and the
Informix server. If a user’s authorization ID to access the federated database
differs from the user’s authorization ID to access a data source, you need to
define an association between the two authorization IDs. This association,
referred to as a user mapping, ensures that distributed requests can be sent to
the data source.

Use the CREATE USER MAPPING statement to map the local user ID to the
Informix server user ID and password; for example:
CREATE USER MAPPING FOR VINCENT SERVER asia
OPTIONS (REMOTE_AUTHID ’vinnie’, REMOTE_PASSWORD ’pasta8me’)

where:

VINCENT
Is the local user ID that you are mapping to a user ID defined at an
Informix server.

SERVER asia
Is the name of the Informix server that you defined in the CREATE
SERVER statement.

REMOTE_AUTHID ’vinnie’
Is the user ID at the Informix database server to which you are
mapping VINCENT. This value is case sensitive unless you set the
FOLD_ID server option to ’U’ or ’L’ in the CREATE SERVER
statement.

REMOTE_PASSWORD ’pasta8me’
Is the password associated with ’vinnie’. This value is case sensitive
unless you set the FOLD_PW server option to ’U’ or ’L’ in the
CREATE SERVER statement.

Use the DB2 special register USER to map the authorization ID of the person
issuing the CREATE USER MAPPING statement to the data source
authorization ID specified in the REMOTE_AUTHID user option. The
following is an example of the CREATE USER MAPPING statement which
includes the USER special register:

122 DB2 Federated Systems Guide

CREATE USER MAPPING FOR USER SERVER asia
OPTIONS (REMOTE_AUTHID ’vinnie’, REMOTE_PASSWORD ’pasta8me’)

Step 5: Test the connection to the Informix server
Test the connection to the Informix server. This will ensure that you can
establish a connection using the server definition and user mappings you
defined. Open a pass-through session and issue a SELECT statement against
the Informix system tables. For example:
SET PASSTHRU server_name
SELECT count(*) FROM informix.systables
SET PASSTHRU RESET

If the SELECT returns a count then your server definition and user mapping
are set up properly. If the SELECT returns an error you may have to:
v Check the Informix server to make sure that it is configured for incoming

connections.
v Check your user mapping to make sure that the settings for the

remote_authid and remote_password options are valid for connections to
the Informix server.

v Check the Informix Client SDK software on the DB2 federated server to
make sure that it is installed and configured correctly to connect to the
Informix server.

v Check your DB2 federated variables to make sure that they are correct for
working with the Informix server. This includes the system environment
variables, db2dj.ini variables, and DB2 Profile Registry (db2set) variable.

v Check your server definition and possibly drop it and create it again.
v Check your user mapping and possibly alter it or create another if

necessary.

Step 6: Create the nicknames for tables, views, and synonyms
The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a
nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the optimizer is read from the data source catalogs and put into the
global catalog on the federated server. Because some or all of the data source
catalog information might be used by the optimizer, it is advisable to update
statistics (using the data source command equivalent to RUNSTATS) at the
data source before you create a nickname.

For each Informix server you defined, assign a nickname to each table, view,
or synonym you want to access on those servers. You will use these
nicknames, instead of the names of the data source objects, when you query
the Informix servers. Nicknames can be up to 128 characters in length. The

Chapter 6. Configuring access to Informix data sources 123

federated server will fold the Sybase server, schema, and table names to
uppercase unless you enclose them in double quotation marks (″). The
following example shows a CREATE NICKNAME statement:
CREATE NICKNAME JPSALES FOR asia."salesdata"."japan"

where:

JPSALES
Is a unique nickname used to identify the Informix table, view, or
synonym.

Note: the nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the
schema of the nickname will be the authid of the user creating the
nickname.

asia.″salesdata″.″japan″
Is a three-part identifier for the remote object.
v asia is the name you assigned to the Informix database server in the

CREATE SERVER statement.
v salesdata is the name of the remote schema to which the table, view,

or synonym belongs.
v japan is the name of the remote table, view, or synonym that you

want to access.

Repeat this step for each Informix table, view, or synonym for which you
want to create nicknames. When you create the nickname, DB2 will use the
connection to query the data source catalog. This query tests your connection
to the data source using the nickname. If the connection does not work, you
will receive an error message.

Related concepts:

v “User mappings and user options” on page 15
v “Nicknames and data source objects” on page 16
v “Index specifications” on page 22

Related tasks:

v “Fast track to setting up your server and database” on page 39
v “Setting up the server to access Informix data sources” on page 47

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

124 DB2 Federated Systems Guide

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

v Appendix C, “Server options for federated systems” on page 287
v Appendix D, “User options for federated systems” on page 297
v Appendix B, “Wrapper options for federated systems” on page 285

Tuning and troubleshooting the configuration to Informix

Once you have set up the configuration to Informix data sources, you may
want to modify the configuration to improve performance. For example, you
might want to set the DB2_DJ_COMM environment variable to improve
performance when the Informix data source is accessed.

Improving performance by setting the FOLD_ID and FOLD_PW server
options

When the federated server connects to a data source, it tries to connect using
all possible combinations of upper and lower case for the user ID and
password, as well as the current case.. This means that the server might make
up to nine connect attempts before successfully connecting to the data source
server. This can slow down connect times. You can improve performance by
specifying values for the FOLD_ID and FOLD_PW server options using the ALTER
SERVER OPTION statement.

Procedure:

v Suppose all your Informix user IDs and passwords are in lowercase, then
setting FOLD_ID and FOLD_PW to the value L (delimited by single quotes)
could improve your connect time. For example:
ALTER SERVER OPTION FOLD_ID FOR SERVER TYPE INFORMIX SETTING ’L’
ALTER SERVER OPTION FOLD_PW FOR SERVER TYPE INFORMIX SETTING ’L’

v Since the federated server attempts each combination of upper and lower
case for the user ID and password, you can reduce the chance of the
maximum number of failed login attempts being exceeded and the ID
getting locked out by setting these options to ’N’ (do not fold the user
ID/password). If you establish these settings, then you need to always
specify the user ID/password in the correct case. If an invalid user
ID/password is specified, the wrapper won’t keep trying the various
combinations. For example:
ALTER SERVER OPTION FOLD_ID FOR
SERVER TYPE INFORMIX SETTING ’N’

ALTER SERVER OPTION FOLD_PW FOR
SERVER TYPE INFORMIX SETTING ’N’

Chapter 6. Configuring access to Informix data sources 125

Improving performance by setting the DB2_DJ_COMM environment
variable (UNIX)

If you find that it takes an inordinate amount of time to access the Informix
server, you can improve the performance by setting the DB2_DJ_COMM
environment variable to load the wrapper when the federated server
initializes rather than when you attempt to access the data source.

Procedure:

To set the DB2_DJ_COMM environment variable:
1. Set the DB2_DJ_COMM environment variable to the wrapper library that

corresponds to the wrapper that you specified. Suppose thatyour federated
server is running AIX . The command to set the DB2_DJ_COMM
environment variable is:
db2set DB2_DJ_COMM=’libdb2informix.a’

Consult the following table for the proper library name.

Table 20. Commands to set the DB2_DJ_COMM variable for Informix data sources

Federated server operating
system

Command

AIX DB2_DJ_COMM= ’libdb2informix.a’

HP-UX DB2_DJ_COMM= ’libdb2informix.sl’

Linux DB2_DJ_COMM= ’libdb2informix.so’

Solaris Operating Environment DB2_DJ_COMM= ’libdb2informix.so’

2. Ensure that the environment variables are set in the program by recycling
the DB2 instance. When you recycle the instance, you refresh the DB2
instance to accept the changes that you made. Issue the following
commands to recycle the DB2 instance:
db2stop
db2start

Related concepts:

v “Environment Variables and the Profile Registry” in the Administration
Guide: Implementation

Related tasks:

v “Setting up the server to access Informix data sources” on page 47

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

v “ALTER SERVER statement” in the SQL Reference, Volume 2

126 DB2 Federated Systems Guide

Chapter 7. Configuring access to Oracle data sources

This chapter explains how to configure your federated server to access data
stored in Oracle databases. It contains two sections:
v Adding Oracle data sources to a federated server
v Tuning and troubleshooting the configuration to Oracle data sources

Adding Oracle data sources to a federated server

Configuring the federated server to access Oracle data sources involves
supplying the server with information about the Informix data sources and
objects you want to access. You can configure access to Oracle data sources
two ways:
v Through the DB2 Control Center
v Through the DB2 Command Center or command line processor (CLP)

The advantage of using the DB2 Control Center is that you do not have to key
in each statement and command. It is the easiest way to quickly configure
access to Oracle data sources. There are a few configuraton tasks that can not
be accomplished through the DB2 Control Center:
v Setting up and testing the Oracle client configuration file.
v Testing the connection to the Oracle server to validate the server definition

and user mappings.
v Adding or dropping column options.

The steps in this section assume that you are using the DB2 Command Center
or the command line processor (CLP) to configure access to Oracle data
sources.

Prerequisites:

v A federated server and database that are setup to access Oracle data
sources.

v The Oracle client software installed and configured on the federated server.
v The proper variables setup. This includes: system environmetn variables,

db2dj.ini variables (UNIX only), and DB2 Profile Registry (db2set) variables.

The steps to accomplish these tasks are discussed in Setting up a federated
server and database.

Procedure:

© Copyright IBM Corp. 1998 - 2002 127

To add an Oracle data source to a federated server:
1. Set up and test the Oracle client configuration file.
2. Create the wrapper.
3. Create the server definition and set the server options.
4. Create the user mappings.
5. Test the connection to the Oracle server.
6. Create nicknames for Oracle tables and views.

These steps are explained in detail in this section. Operating system-specific
differences are noted where they occur.

Step 1: Set up and test a client configuration file
The client configuration file is used to connect to Oracle databases, using the
client libraries that are installed on the federated server. This file specifies the
location of each Oracle database server and type of connection (protocol) for
the database server. The default name for the Oracle client configuration file is
tnsnames.ora .

To set up the client configuration file, use the utility that comes with the
Oracle client software. See the installation documentation from Oracle for
more information about using this utility. Within the tnsnames.ora file, the
SID is the name of the Oracle instance, and the HOST is the host name where
the Oracle server is located.

The directory in which the tnsnames.ora file is created depends on the
operating system running on your federated server.

Table 21. Default path and name of the Oracle client configuration file.

Operating system Default path and name

UNIX $ORACLE_HOME/network/admin

Windows %ORACLE_HOME%\NETWORK\ADMIN

Test the connection to ensure that the client software is able to connect to the
Oracle server. Use the Oracle sqlplus tool to test the connection.

Setting a different location for the tnsnames.ora file
If you decide to place the tnsnames.ora file in a path other than the default
search path, you must set the TNS_ADMIN environment variable to specify
the file location. To set this environment variable:
1. Edit the db2dj.ini file located in the sqllib/cfg directory, and set the

TNS_ADMIN environment variable:
TNS_ADMIN=x:\path\tnsnames.ora

128 DB2 Federated Systems Guide

2. To ensure that the environment variable is set in the program, recycle the
DB2 instance. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

Step 2: Create the wrapper
To specify the wrapper that will be used to access Oracle data sources, use the
CREATE WRAPPER statement. DB2 Relational Connect includes two
wrappers for Oracle — SQLNET and NET8. To determine which wrapper to use,
consult the following table.

Table 22. Oracle wrappers by client version and operating system

Oracle client Operating system Wrapper to use

Oracle Version 7 AIX SQLNET

Windows NT and
Windows 2000

SQLNET

HP-UX, Linux, and
Solaris

not applicable

Oracle Version 8 AIX NET8

Windows NT or
Windows 2000

NET8 (recommended) or SQLNET

HP-UX, Linux, and
Solaris

NET8

Oracle Version 9 AIX NET8

Windows NT or
Windows 2000

NET8 (recommended) or SQLNET

HP-UX, Linux, and
Solaris

NET8

Note: The SQLNET wrapper uses OCI 7 (Oracle Call Interface) API calls. The
NET8 wrapper uses OCI 8 API calls. If the Oracle 8 or Oracle 9 client is
installed, you will experience better performance and functionality by using
the NET8 wrapper. Additionally, the NET8 wrapper has LOB support. Since the
OCI 7 does not support LOB data types, the SQLNET wrapper does not support
the LOB data types. The SQLNET wrapper does not support Oracle LOB
datatypes. The wrapper maps Oracle LONG datatypes to DB2 for UNIX and
Windows LOB datatypes. The NET8 wrapper supports Oracle LOB datatypes,
but does not Oracle LONG datatypes.

The following example shows the CREATE WRAPPER statement for the NET8
wrapper:
CREATE WRAPPER NET8

Chapter 7. Configuring access to Oracle data sources 129

Recommendation: Use the default wrapper names (SQLNET or NET8). When
you create the wrapper using one of the default names, the federated server
automatically picks up the default library name associated with the wrapper.
If the wrapper name conflicts with an existing wrapper name in the federated
database, you can substitute the default wrapper name with a name you
choose. If you use a name that is different than one of the default names, you
must include the LIBRARY parameter in the CREATE WRAPPER statement.
Suppose that you have a federated server running on AIX and you decide to
use a wrapper name that is not one of the default names. Examples of the
CREATE WRAPPER statements for SQLNET and NET8 are:
CREATE WRAPPER mywrapper LIBRARY ’libdb2sqlnet.a’

CREATE WRAPPER mywrapperLIBRARY ’libdb2net8.a’

The wrapper library names for Oracle are:

Table 23. Oracle wrapper library names

Operating system on your
federated server

Wrapper library names for
SQLNET

Wrapper library names for
NET8

AIX libdb2sqlnet.a libdb2net8.a

HP-UX libdb2sqlnet.so libdb2net8.so

Linux libdb2sqlnet.sl libdb2net8.sl

Solaris Operating
Environment

libdb2sqlnet.so libdb2net8.so

Windows NT and Windows
2000

db2sqlnet.dll db2net8.dll

Step 3: Create the server definition
In the federated database, you must define each Oracle server that you want
to access. You create a server definition using CREATE SERVER statement. For
example:
CREATE SERVER oraserver TYPE oracle VERSION 7.2 WRAPPER net8
OPTIONS (NODE ’paris_node’)

where:

oraserver
Is a name you assign to the Oracle database server. This name must
be unique. Duplicate server names are not allowed.

TYPE oracle
Specifies the type of data source server to which you are configuring
access. The type parameter for the SQLNET and NET8 wrappers must be
oracle.

130 DB2 Federated Systems Guide

VERSION 7.2
Is the version of Oracle database server that you want to access. The
supported Oracle versions are 7.x, 8.x, and 9.x.

WRAPPER net8
Is the name you specified in the CREATE WRAPPER statement.

NODE ’paris_node’
Is the name of the node where the Oracle database server resides.
Obtain the node name from the tnsnames.ora file.

Although the node name is specified as an option in the CREATE
SERVER statement, it is required for Oracle data sources.

Locating the node name
You must define the node name in the Oracle tnsnames.ora file (see step 1).
Although the node_name is specified as an option in the CREATE SERVER
statement, it is required for Oracle data sources. This is an example of a
tnsnames.ora file:
ORA9I.SEEL =

(DESCRIPTION =
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = somehost)(PORT = 1521)))
(CONNECT_DATA =
(SERVICE_NAME = ora9i.seel)))

The node value to use in the CREATE SERVER statement would be
ora9i.seel.

Optional: Set additional server options
When you create the server definition, you can specify additional server
options in the CREATE SERVER statement. There are general server options
and data source-specific server options.

DB2 assumes that all of the Oracle VARCHAR columns contain trailing
blanks. If you are certain that all VARCHAR columns in the Oracle database
do not contain trailing blanks, you can set a server option to specify that the
data source uses non-blank padded VARCHAR comparison semantic. An
example of the CREATE SERVER statement with this server options is:
CREATE SERVER oraserver TYPE oracle VERSION 7.2 WRAPPER net8
OPTIONS (NODE ’paris_node’, VARCHAR_NO_TRAILING_BLANKS ’Y’)

Note: Suppose only some of the VARCHAR columns do not contain blanks.
You can set an option on those specific columns with the CREATE
NICKNAME or ALTER NICKNAME statements.

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

Chapter 7. Configuring access to Oracle data sources 131

Step 4: Create the user mappings
When you attempt to access an Oracle server, access is granted if the
authorization IDs are the same between the federated database and the Oracle
server. If a user’s authorization ID to access the federated database differs
from the user’s authorization ID to access a data source, you need to define
an association — a user mapping — between the two authorization IDs so
that distributed requests can be sent to the data source.

Use the CREATE USER MAPPING statement to map the local user ID to the
Oracle server user ID and password; for example:
CREATE USER MAPPING FOR robert SERVER oraserver
OPTIONS (REMOTE_AUTHID ’rob’, REMOTE_PASSWORD ’then4now’)

where:

robert Is the local user ID that you are mapping to a user ID defined at an
Oracle server.

SERVER oraserver
Is the name of the Oracle server that you defined in the CREATE
SERVER statement.

REMOTE_AUTHID ’rob’
Is the user ID at the Oracle database server to which you are mapping
robert. This value is case sensitive unless you set the FOLD_ID server
option to ’U’ or ’L’ in the CREATE SERVER statement.

REMOTE_PASSWORD ’then4now’
Is the password associated with ’rob’. This value is case sensitive
unless you set the FOLD_PW server option to ’U’ or ’L’ in the
CREATE SERVER statement.

You can use the DB2 special register USER to map the authorization ID of the
person issuing the CREATE USER MAPPING statement to the data source
authorization ID specified in the REMOTE_AUTHID user option. The
following is an example of the CREATE USER MAPPING statement which
includes the USER special register:
CREATE USER MAPPING FOR USER SERVER oraserver
OPTIONS (REMOTE_AUTHID ’rob’, REMOTE_PASSWORD ’then4now’)

Restriction: The user ID at the Oracle data source must have been created
using the Oracle create user command with the ’identified by’ clause, instead
of the ’identified externally’ clause.

132 DB2 Federated Systems Guide

Step 5: Test the connection to the Oracle server
Test the connection to the Oracle server to ensure that you can establish a
connection, using the server definition and user mappings you defined. Open
a pass-through session and issue a SELECT statement against the Oracle
system tables. For example:
SET PASSTHRU server_name
SELECT count(*) FROM oracle.systables
SET PASSTHRU RESET

If the SELECT returns a count, then your server definition and user mapping
are set up properly. If the SELECT returns an error, you may have to:
v Check the Oracle server to make sure that it is configured for incoming

connections.
v Check your user mapping to make sure that the settings for the

remote_authid and remote_password options are valid for connections to
the Oracle server.

v Check the Oracle client software on the DB2 federated server to make sure
that it is installed and configured correctly to connect to the Oracle server.

v Check your DB2 federated variables to make sure that they are correct for
working with the Oracle server. This includes the system environment
variables, db2dj.ini variables, and DB2 Profile Registry (db2set) variable.

v Check your server definition and possibly drop it and create it again.
v Check your user mapping and possibly alter it or create another if

necessary.

Step 6: Create the nicknames for tables and views
The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a
nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the optimizer is read from the data source catalogs and put into the
global catalog on the federated server. Because some or all of the data source
catalog information might be used by the optimizer, it is advisable to update
statistics (using the data source command equivalent to RUNSTATS) at the
data source before you create a nickname.

For each Oracle server you defined, assign a nickname to each table or view
you want to access on those servers. You will use these nicknames, instead of
the names of the data source objects, when you query the Oracle servers.
Nicknames can be up to 128 characters in length.

The federated server will fold the Sybase server, schema, and table names to
uppercase unless you enclose them in double quotation marks (″). The
following example shows a CREATE NICKNAME statement:

Chapter 7. Configuring access to Oracle data sources 133

CREATE NICKNAME PARISINV FOR oraserver."france"."inventory"

where:

PARISINV
Is a unique nickname used to identify the Oracle table or view.

Note: the nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the
schema of the nickname will be the authid of the user creating the
nickname.

oraserver.″france″.″inventory″
Is a three-part identifier for the remote object.
v oraserver is the name you assigned to the Oracle database server in

the CREATE SERVER statement.
v france is the name of the remote schema to which the table or view

belongs.
v inventory is the name of the remote table or view that you want to

access.

Repeat this step for each Oracle table or view for which you want create
nicknames. When you create the nickname, DB2 will use the connection to
query the data source catalog. This query tests your connection to the data
source using the nickname. If the connection does not work, you will receive
an error message.

Related concepts:

v “User mappings and user options” on page 15
v “Index specifications” on page 22

Related tasks:

v “Fast track to setting up your server and database” on page 39

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

v Appendix C, “Server options for federated systems” on page 287
v Appendix D, “User options for federated systems” on page 297
v Appendix B, “Wrapper options for federated systems” on page 285

134 DB2 Federated Systems Guide

Tuning and troubleshooting the configuration to Oracle data sources

Once you have set up the configuration to Oracle data sources, you may want
to modify the configuration to improve performance. For example, you might
want to set the DB2_DJ_COMM environment variable to improve
performance when the Oracle data source is accessed.

Improving performance by setting the DB2_DJ_COMM environment
variable (UNIX)

If you find that it takes an inordinate amount of time to access the Oracle
server, you can improve the performance by setting the DB2_DJ_COMM
environment variable. Setting the DB2_DJ_COMM environment variable will
load the wrapper when the federated server initializes rather than when you
attempt to access the data source.
1. Set the DB2_DJ_COMM environment variable to the wrapper library that

corresponds to the wrapper that you specified. Suppose that your
federated server is running AIX and the wrapper you are using is NET8.
The command to set the DB2_DJ_COMM environment variable is:
db2db2set DB2_DJ_COMM= ’libdb2net8.a’

Consult the following table for the proper library name.

Table 24. Oracle wrapper library names

Operating system on your
federated server

SQLNET wrapper library
names

NET8 wrapper library
names

AIX libdb2sqlnet.a libdb2net8.a

HP-UX libdb2sqlnet.so libdb2net8.so

Linux libdb2sqlnet.sl libdb2net8.sl

Solaris Operating
Environment

libdb2sqlnet.so libdb2net8.so

2. Recycle the DB2 instance to ensure that the environment variables are set
in the program. When you recycle the instance, the DB2 instance accepts
the changes that you made. Issue the following commands to recycle the
DB2 instance:
db2stop
db2start

Connectivity problems
For each HOST in the DESCRIPTION section of the tnsnames.ora file, you
may need to update the hosts file. Whether you update this file depends on
how TCP/IP is configured on your network. Part of the network must
translate the remote host name specified in the DESCRIPTION section in the
tnsnames.ora file to an address. If your network has a name server that

Chapter 7. Configuring access to Oracle data sources 135

recognizes the host name, you do not need to update the TCP/IP hosts file.
Otherwise, you need an entry for the remote host. See your network
administrator to determine how your network is configured. If you need to
update the hosts file, the file location depends on the federated server
operating system:

On UNIX federated servers
Update the /etc/hosts file

On Windows federated servers
Update the x:\winnt\system32\drivers\etc\hosts file

Related tasks:

v “Setting up the server to access Oracle data sources” on page 50

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

136 DB2 Federated Systems Guide

Chapter 8. Configuring access to Sybase data sources

This chapter explains how to configure your federated server to access data
stored in Sybase databases. It contains two sections:
v Adding Sybase data sources to a federated server
v Tuning and troubleshooting the configuration to Sybase data sources

Adding Sybase data sources to a federated server

Configuring the federated server to access Sybase data sources involves
supplying the server with information about the Sybase data sources and
objects you want to access. You can configure access to Sybase data sources
two ways:
v Through the DB2 Control Center
v Through the DB2 Command Center or command line processor (CLP)

The advantage of using the DB2 Control Center is that you do not have to key
in each statement and command. It is the easiest way to quickly configure
access to Sybase data sources. There are a few configuration tasks that you
cannot accomplish through the DB2 Control Center:
v Setting up and testing the Sybase client configuration file.
v Testing the connection to the Sybase server to validate the server definition

and user mappings.
v Adding or dropping column options.

The steps in this section assume that you are using the DB2 Command Center
or the command line processor (CLP) to configure access to Sybase data
sources.

Prerequisites:

v A federated server and database that are setup to access Sybase data
sources.

v The Sybase client software installed and configured on the federated server.
v The proper variables setup. This includes: system environmetn variables,

db2dj.ini variables (UNIX only), and DB2 Profile Registry (db2set) variables.

The steps to accomplish these tasks are discussed in Setting up a federated
server and database.

Restrictions:

© Copyright IBM Corp. 1998 - 2002 137

The DBLIB wrapper is a read-only wrapper, it does not support INSERT,
UPDATE, or DELETE operations.

Procedure:

To add a Sybase data source to a federated server:
1. Set up and test the Sybase client configuration file.
2. Create the wrapper.
3. Create the server definition and set the server options.
4. Create the user mappings.
5. Test the connection to the Sybase server.
6. Create nicknames for Sybase tables and views.

These steps are explained in detail in this section. The operating
system-specific differences are noted where they occur.

Step 1: Set up and test the client configuration file
The client configuration file is used to connect to Sybase using the Sybase
Open Client libraries that are installed on the federated server. This file
specifies the location of each Sybase SQL Server and Adaptive Server
Enterprise instance and the type of connection (protocol) for the database
server.

To set up the client configuration file use the utility that comes with the
Sybase Open Client software. Set up a client configuration file on each
instance in the DB2 federated server that will be used to connect to Sybase.
See the Sybase documentation for more information about using this utility.

The directory that the client configuration file is created in depends on the
operating system you are running on your federated server.

Table 25. Default path and name of the Sybase client configuration file.

Operating system Default path and name

UNIX $SYBASE/interfaces

Windows %SYBASE%\ini\sql.ini

Once you set up the client configuration file, you must make it accessible to
the DB2 federated server instance.

On UNIX federated servers:

To make the interfaces accessble, use one of these options:
v Copy the file to the $HOME/sqllib directory of the DB2 federated

instance.

138 DB2 Federated Systems Guide

v Use the ln command to create a link from the /sqllib sub-directory
to the interfaces file in the instance $HOME/sqllib directory. For
example:
ln -s -f /home/sybase/interfaces /home/db2djinst1/sqllib

v Use the IFILE server option to specify the full path to the Sybase
interfaces file.

On Windows federated servers:
Copy the sql.ini file to the c:\Program Files\SQLLIB directory of the
DB2 federated instance. Since DB2 Relational Connect uses interfaces
as the default name for the Sybase client configuration file, it is
recommended that you rename the Windows sql.ini file in the
c:\Program Files\SQLLIB directory to interfaces..

Note: If you choose not to rename the sql.ini file to interfaces, you
must use the IFILE server option when you create the server
definition (see step 3).

Test the connection to ensure that the Sybase Open client software is able to
connect to the Sybase server. Use an appropriate Sybase query utility, such as
isql.

Step 2: Create the wrapper
To specify the wrapper that will be used to access Sybase data sources, use
the CREATE WRAPPER statement. DB2 Relational Connect includes two
wrappers for Sybase, the Open Client Client-Library wrapper called CTLIB and
the Open Client DB-Library wrapper called DBLIB. The following example
shows the CREATE WRAPPER statement for the Open Client Client-Library
wrapper:
CREATE WRAPPER CTLIB

You can use either the CTLIB or DBLIB wrapper regardless of the operating
system running on your federated server.

Recommendation: Use the default wrapper names (CTLIB or DBLIB). When
you create the wrapper using one of the default names, the federated server
automatically picks up the default library name associated with that the
wrapper. If the wrapper name conflicts with an existing wrapper name in the
federated database, you can substitute the default wrapper name with a name
you choose. If you use a name that is different than one of the default names,
you must include the LIBRARY parameter in the CREATE WRAPPER
statement. Suppose that you have a federated server running on AIX and you
decide to use a wrapper name that is not one of the default names. Examples
of the CREATE WRAPPER statements for CTLIB and DBLIB are:
CREATE WRAPPER mywrapper LIBRARY ’libdb2ctlib.a’

CREATE WRAPPER mywrapper LIBRARY ’libdb2dblib.a’

Chapter 8. Configuring access to Sybase data sources 139

The wrapper library names for Sybase are:

Table 26. Sybase wrapper library names

Operating system on your
federated server

CTLIB wrapper library
names

DBLIB wrapper library
names

AIX libdb2ctlib.a libdb2dblib.a

HP-UX libdb2ctlib.so libdb2dblib.so

Linux libdb2ctlib.sl libdb2dblib.sl

Solaris Operating
Environment

libdb2ctlib.so libdb2dblib.so

Windows NT and Windows
2000

db2ctlib.dll db2dblib.dll

Step 3: Create the server definition
In the federated database, you must define each Sybase server that you want
to access. You create a server definition using CREATE SERVER statement. For
example:
CREATE SERVER SYBSERVER TYPE SYBASE VERSION 12.0 WRAPPER CTLIB
OPTIONS (NODE ’sybnode’, DBNAME ’sybdb’)

where:

SYBSERVER
Is a name that you assign to the Sybase server. This name must be
unique. Duplicate server names are not allowed.

TYPE SYBASE
Specifies Sybase as the type of data source to which you are
configuring access. The TYPE parameter for the CTLIB and DBLIB
wrappers must be SYBASE.

VERSION 12.0
Is the version of the Sybase database server software that you want to
access. The supported versions are 11, 11.5, 12, and 12.5.

WRAPPER CTLIB
Is the wrapper name that you specified in the CREATE WRAPPER
statement.

NODE ’sybnode’
Is the name of the node where SYBSERVER resides. Obtain the node
name from the interfaces file. This value is case-sensitive.

Although the node name is specified as an option in the CREATE
SERVER statement, it is required for Sybase data sources.

140 DB2 Federated Systems Guide

DBNAME ’sybdb’
Is the name of the Sybase database that you want to access. Obtain
this name from the Sybase server. This value is case-sensitive.

Although the database name is specified as an option in the CREATE
SERVER statement, it is required for Sybase data sources.

Locating the node name
You must define the node name in the Sybase interfaces file (see step 1).
Although the node name is specified as an option in the CREATE SERVER
SQL statement, it is required for Sybase data sources. The following table
contains examples of theinterfaces file to help you locate the node name:

Table 27. Locating the node name in the Sybase interfaces file.

Operating system Sample interfaces files

AIX sybase119
query tcp ether anaconda 4100

Solaris Operating Environment sybase119
query tli tcp /dev/tcp
\x000210040970191c0000000000000000

Windows NT or Windows 2000 [sybase119]
query=TCP,anaconda 4100

The first value is the node name; sybase119 in these examples. This is
followed by the type of connection (TCP/IP) and the host name (anaconda).

Optional: Set additional server options
When you create the server definition, you can specify additional server
options in the CREATE SERVER statement. There are general server options
and Sybase–specific server options. The Sybase-specific options are:

IFILE
Specifies the full path and name of the Sybase Open Client interfaces
file.

LOGIN_TIMEOUT
Specifies the length of time, in seconds, that DB2 Universal Database
waits for a login response when making a connection attempt. The default
behavior is to wait indefinately for a response from the Sybase server.

PACKET_SIZE
Determines the packet size that Client-Library uses when sending Tabular
Data Stream (TDS) packets. If an application needs to send or receive
large amounts of text, image, or bulk data, a larger packet size may
improve efficiency.

TIMEOUT
Specifies the length of time, in seconds, that DB2 Universal Database

Chapter 8. Configuring access to Sybase data sources 141

waits for a server response to a command. The default behavior is to wait
indefinately for a response from the Sybase server. The Sybase Open
Client uses timeout thresholds to interrupt queries and responses that run
for too long a period of time.

Examples:

Using theDBLIB wrapper, set the timeout value to the number of seconds the
wrapper should wait for a response from the Sybase server. This will avoid
deadlocks on transactions. To include the TIMEOUT server option in the
server definition on UNIX servers use:
CREATE SERVER SYBSERVER TYPE SYBASE
VERSION 12.0 WRAPPER DBLIB
OPTIONS (NODE ’sybnode’, DBNAME ’sybdb’,
TIMEOUT ’60’, LOGIN_TIMEOUT ’60’, PACKET_SIZE ’1024’,
IFILE ’/home/sybase/interfaces’)

To include the IFILE server option in the server definition on Windows
servers, use:
CREATE SERVER SYBSERVER TYPE SYBASE
VERSION 12.0 WRAPPER DBLIB
OPTIONS (NODE ’sybnode’, DBNAME ’sybdb’,
IFILE ’C:\Sybase\OCS-12_0\ini\sql.ini’)

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

Step 4: Create the user mappings
When you attempt to access a Sybase server, access is granted if the
authorization IDs are the same between the federated database and the Sybase
server. If a user’s authorization ID to access the federated database differs
from the user’s authorization ID to access a data source, you need to define
an association — a user mapping — between the two authorization IDs so
that distributed requests can be sent to the data source.

Use the CREATE USER MAPPING statement to map the local user ID to the
Sybase server user ID and password; for example:
CREATE USER MAPPING FOR maria SERVER SYBSERVER
OPTIONS (REMOTE_AUTHID ’mary’, REMOTE_PASSWORD ’day2night’)

where:

maria Is the local user ID that you are mapping to a user ID defined at the
Sybase server.

SERVER SYBSERVER
Is the name of the Sybase server that you defined in the CREATE
SERVER statement.

142 DB2 Federated Systems Guide

REMOTE_AUTHID ’mary’
Is the user ID at the Sybase server to which you are mapping maria.
This value is case sensitive unless you set the FOLD_ID server option
to ’U’ or ’L’ in the CREATE SERVER statement.

REMOTE_PASSWORD ’day2night’
Is the password associated with ’mary’. This value is case sensitive
unless you set the FOLD_PW server option to ’U’ or ’L’ in the
CREATE SERVER statement.

Note: You can use the DB2 special register USER to map the authorization ID
of the person issuing the CREATE USER MAPPING statement to the data
source authorization ID specified in the REMOTE_AUTHID user option. The
following is an example of the CREATE USER MAPPING statement which
includes the USER special register:
CREATE USER MAPPING FOR USER SERVER SYBSERVER
OPTIONS (REMOTE_AUTHID ’mary’, REMOTE_PASSWORD ’day2night’)

Step 5: Test the connection to the Sybase server
Test the connection to the Sybase server to ensure that you can establish a
connection, using the server definition and user mappings you defined. Open
a pass-through session and issue a SELECT statement against the Sybase
system tables. For example:
SET PASSTHRU server_name
SELECT count(*) FROM dbo.sysobjects
SET PASSTHRU RESET

If the SELECT returns a count, then your server definition and user mapping
are set up properly. If the SELECT returns an error, you may have to:
v Check the Sybase server to make sure that it is configured for incoming

connections.
v Check your user mapping to make sure thatthe settings for the

remote_authid and remote_password options are valid for connections to
the Sybase server.

v Check the Sybase client software on the DB2 federated server to make sure
that it is installed and configured correctly to connect to the Sybase server.

v Check your DB2 federated variables to make sure that they are correct for
working with the Sybase server. This includes the system environment
variables, db2dj.ini variables, and DB2 Profile Registry (db2set) variable.

v Check your server definition and possibly drop it and create it again.
v Check your user mapping and possibly alter it or create another if

necessary.

Step 6: Create the nicknames for tables and views
The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a

Chapter 8. Configuring access to Sybase data sources 143

nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the optimizer is read from the data source catalogs and put into the
global catalog on the federated server. Because some or all of the data source
catalog information might be used by the optimizer, it is advisable to update
statistics (using the data source command equivalent to RUNSTATS) at the
data source before you create a nickname.

For each Sybase server that you defined, assign a nickname to each table or
view that you want to access on those servers. You will use these nicknames,
instead of the names of the data source objects, when you query the Sybase
servers. Nicknames can be up to 128 characters in length.

The federated server will fold the Sybase server, schema, and table names to
uppercase unless you enclose them in double quotation marks (″). The
following example shows a CREATE NICKNAME statement:
CREATE NICKNAME SYBSALES FOR SYBSERVER."salesdata"."europe"

where:

SYBSALES
Is a unique nickname for the Sybase table or view.

Note: The nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the
schema of the nickname will be the authentication ID of the user
creating the nickname.

SYBSERVER.″salesdata″.″europe″
Is a three-part identifier for the remote object.
v SYBSERVER is the name you assigned to the Sybase database

server in the CREATE SERVER statement.
v salesdata is the name of the remote schema to which the table or

view belongs.
v europe is the name of the remote table or view that you want to

access.

Repeat this step for each Sybase table or view for which you want create
nicknames. When you create the nickname, DB2 will use the connection to
query the data source catalog. This query tests your connection to the data
source using the nickname. If the connection does not work, you will receive
an error message.

Related concepts:

v “User mappings and user options” on page 15

144 DB2 Federated Systems Guide

v “Nicknames and data source objects” on page 16
v “Index specifications” on page 22

Related tasks:

v “Fast track to setting up your server and database” on page 39
v “Modifying server definitions” on page 203

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

v Appendix C, “Server options for federated systems” on page 287
v Appendix D, “User options for federated systems” on page 297
v Appendix B, “Wrapper options for federated systems” on page 285

Tuning and troubleshooting the configuration to Sybase data sources

Once you have set up the configuration to Sybase data sources, you may want
to modify the configuration to improve performance. For example, you might
want to set the DB2_DJ_COMM environment variable to improve
performance when the Sybase data source is accessed.

Improving performance by setting the DB2_DJ_COMM environment
variable (UNIX)

If you find that it takes an inordinate amount of time to access the Sybase
server, you can improve the performance by setting the DB2_DJ_COMM
environment variable. Setting the DB2_DJ_COMM environment variable will
load the wrapper when the federated server initializes rather than when you
attempt to access the data source.

Procedure:

To set the DB2_DJ_COMM environment variable:
1. Set the DB2_DJ_COMM environment variable to the wrapper library that

corresponds to the wrapper that you specified. Suppose that your
federated server is running AIX and the wrapper you are using is CTLIB.
The command to set the DB2_DJ_COMM environment variable is:
db2set DB2_DJ_COMM= ’libdb2ctlib.a’

Chapter 8. Configuring access to Sybase data sources 145

Consult the following table for the proper library name.

Table 28. Sybase wrapper library names

Operating system on your
federated server

CTLIB wrapper library
names

DBLIB wrapper library
names

AIX libdb2ctlib.a libdb2dblib.a

HP-UX libdb2ctlib.so libdb2dblib.so

Linux libdb2ctlib.sl libdb2dblib.sl

Solaris Operating
Environment

libdb2ctlib.so libdb2dblib.so

2. Recycle the DB2 instance to ensure that the environment variables are set
in the program. When you recycle the instance, the DB2 instance accepts
the changes that you made. Issue the following commands to recycle the
DB2 instance:
db2stop
db2start

Using CTLIB instead of DBLIB
CT-Library supports dynamic prepare-and-execute of statements. This allows
CT-Library applications to prepare a statement once and execute it many
times with different inputs. Preparing a statement once eliminates the need to
recompile the statement for each input parameter change. While the DB2
application may not take advantage of dynamic SQL, federated query
processing of remote queries uses dynamic SQL exclusively.

Resolving the sp_helpindex error
The federated system relies on one of the Sybase catalog stored procedures,
sp_helpindex. If you receive the following SQL error, the Sybase catalog
stored procedures may not be installed on the Sybase server.
SQL0204N "sp_helpindex" is an undefined name.

Have the Sybase administrator install the catalog stored procedures on the
Sybase server.

Related tasks:

v “Adding Sybase data sources to a federated server” on page 137

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

146 DB2 Federated Systems Guide

Chapter 9. Configuring access to Microsoft SQL Server
data sources

This chapter explains how to configure your federated server to access data
stored in Microsoft SQL Server databases. It contains two sections:
v Adding Microsoft SQL Server data sources to a federated server
v Tuning and troubleshooting the configuration to Microsoft SQL Server data

sources

Adding Microsoft SQL Server data sources to a federated server

Configuring the federated server to access Microsoft SQL Server data sources
involves supplying the federated server with information about the Microsoft
SQL Server data sources and objects that you want to access. You can
configure access to Microsoft SQL Server data sources two ways:
v Through the DB2 Control Center
v Through the DB2 Command Center or command line processor (CLP)

The advantage of using the DB2 Control Center is that you do not have to key
in each statement and command. It is the easiest way to quickly configure
access to Microsoft SQL Server data sources. There are a few configuration
tasks that you cannot accomplish through the DB2 Control Center:
v Testing the connection to the Microsoft SQL Server server to validate the

server definition and user mappings.
v Adding or dropping column options.

The steps in this section assume that you are using the DB2 Command Center
or the command line processor (CLP) to configure access to Microsoft SQL
Server data sources.

Prerequisites:

v A federated server and database that are setup to access Microsoft SQL
Server data sources.

v The Microsoft SQL Server ODBC driver installed and configured on the
federated server.

v The proper variables setup. This includes: system environmetn variables,
db2dj.ini variables (UNIX only), and DB2 Profile Registry (db2set) variables.

The steps to accomplish these tasks are discussed in Setting up a federated
server and database.

© Copyright IBM Corp. 1998 - 2002 147

Procedure:

To add a Microsoft SQL Server data source to a federated server:
1. Prepare the federated server and federated database.

v On Windows—Confirm ODBC System DSN is properly set up and test
the connection to the Microsoft SQL Server remote server.

v On UNIX—Update or create an odbc.ini file and test the connection to
the Microsoft SQL Server remote server.

2. Create the wrapper.
3. Create the server definition and set the server options.
4. Create the user mappings.
5. Test the connection to the Microsoft SQL Server remote server.
6. Create nicknames for Microsoft SQL Server tables and views.

These steps are explained in detail in this section. The operating
system-specific differences are noted where they occur.

Step 1: Prepare the federated server and database
The steps to prepare the federated server and database to access Microsoft
SQL Server data sources depend on the operating system running on your
federated server.

On Windows:

It is important for you to verify that the ODBC System DSN has been set to
connect to the Microsoft SQL Server data source. You can check this setting in
the Control Panel by:
1. Open the Control Panel through the Start menu.
2. Double-click on ODBC Data Sources to display the ODBC Data Source

Administrator window.
3. Click on the System DSN tab to confirm that the System DSN you defined

for the ODBC driver appears on the list. The node name for the Microsoft
SQL Server data source must be defined in the System DSN.

Test the connection to ensure that the ODBC Systems DSN is able to connect
to the Microsoft SQL Server data source. You can test the connection by
selecting Configure in the ODBC Data Source Administrator window.
Alternatively, you can test the connection using the Microsoft SQL Server
query tool.

On UNIX:

148 DB2 Federated Systems Guide

Make sure that the odbc.ini file has been updated (or if necessary created) on
the federated server. It’s recommended that the odbc.ini file, or a copy of it,
be place in the home directory of the DB2 instance owner. Make sure that the
path to the odbc.ini is in the ODBCINI environment variable.

Test the connection to ensure that the federated server is able to connect to the
Microsoft SQL Server data source. Use the DataDirect Connect ODBC
demoodbc tool to test the connection. This tool is located in the /demo
sub-directory of the Connect ODBC libraries.

Step 2: Create the wrapper
To specify the wrapper that will be used to access Microsoft SQL Server data
sources, use the CREATE WRAPPER statement. DB2 Relational Connect
includes two wrappers for Microsoft SQL Server.

Table 29. Supported ODBC drivers and the default wrapper names

Federated server operating
system

ODBC driver Wrapper Name

UNIX DataDirect Connect ODBC
3.7 driver

MSSQLODBC3

Windows ODBC 3.0 (or higher) driver DJXMSSQL3

The following example shows the CREATE WRAPPER statement for the
Windows NT and Windows 2000 wrapper:
CREATE WRAPPER DJXMSSQL3

Recommendation:IBM recommends you that use the default wrapper names
(DJXMSSQL3 and MSSQLODBC3). When you create the wrapper using one of the
default names, the federated server automatically picks up the default library
name associated with that wrapper name. If the wrapper name conflicts with
an existing wrapper name in the federated database, you can substitute the
default wrapper name with a name you choose. If you use a name that is
different than one of the default names, you must include the LIBRARY
parameter in the CREATE WRAPPER statement. Suppose that you have a
federated server running on AIX and you decide to use a wrapper name that
is not one of the default names. The CREATE WRAPPER statement that you
need to use is:
CREATE WRAPPER mywrapper LIBRARY ’libdb2mssql3.a’

where mywrapper is the name you give to the wrapper instead of using the
default wrapper name.

Chapter 9. Configuring access to Microsoft SQL Server data sources 149

The wrapper library names for Microsoft SQL Server are:

Table 30. Microsoft SQL Server wrapper library names

Operating system on your federated
server

Wrapper library name

AIX libdb2mssql3.a

HP-UX libdb2mssql3.sl

Linux libdb2mssql3.so

Solaris Operating Environment libdb2mssql3.so

Windows db2mssql3.dll

Step 3: Create the server definition
In the federated database, you must define each Microsoft SQL Server remote
server that you want to access. You create a server definition using CREATE
SERVER statement. For example:
CREATE SERVER sqlserver TYPE MSSQLSERVER VERSION 7.0 WRAPPER djxmssql3
OPTIONS (NODE ’sqlnode’, DBNAME ’africa’)

where:

sqlserver
Is a name that you assign to the Microsoft SQL Server remote server.
This name must be unique. Duplicate server names are not allowed.

TYPE MSSQLSERVER
Is the type of data source to which you are configuring access. The
TYPE parameter for the Microsoft SQL Server wrappers must be
MSSQLSERVER.

VERSION 7.0
Is the version of Microsoft SQL Server database server software that
you want to access. Supported versions are 6.5 and 7.0.

WRAPPER djxmssql3
Is the wrapper name that you specified in the CREATE WRAPPER
statement.

NODE ’sqlnode’
Is the name of the node where the Microsoft SQL Server remote server
resides. This value is case sensitive.

Although the name of the node is specified as an option in the
CREATE SERVER statement, it is required for Microsoft SQL Server
data sources.

150 DB2 Federated Systems Guide

DBNAME ’africa’
Is the name of the database that you want to access. This value is case
sensitive.

Although the name of the database is specified as an option in the
CREATE SERVER statement, it is required for Microsoft SQL Server
data sources.

Locating the node name
If your federated server is using Windows NT or Windows 2000, the NODE is
the System DSN name that you specified for the Microsoft SQL Server remote
server that you are accessing.

If your federated server is using AIX, HP-UX, Linux, or Solaris Operating
Environment, the NODE is defined in the .odbc.ini file. The following is an
example of the.odbc.ini file on AIX. At the top of the .odbc.ini file there is a
section labeled [ODBC Data Sources] which lists the nodes. Each of the nodes
has a section [node_name] describing each node.

Table 31. Locating the node name in the .odbc.ini file.

Operating system Sample .odbc.ini file

AIX rawilson=MS SQL Server 7.0
medusa=MS SQL Server 7.0
[rawilson]
Driver=/djxclient/mssql/merant/3.7/lib/ivmsss16.so
Description=MS SQL Server Driver for AIX

Address=9.112.30.39,1433
[medusa]
Driver=/djxclient/mssql/merant/3.7/lib/ivmsss16.so
Description=MS SQL Server Driver for AIX
Address=9.112.98.123,1433

Optional: Set additional server options
When you create the server definition, you can specify additional server
options in the CREATE SERVER statement. There are general server options
and data source-specific server options.

The collating_sequence server option specifies whether the data source uses
the same collating sequence as the federated server. On a Microsoft SQL
Server database server running Windows NT or Windows 2000, the default
collating sequence is not case-sensitive (for example, ’STEWART’ and
’StewART’ are considered equal). To guarantee correct results from federated
server, set the COLLATING_SEQUENCE server option to ’I’.

Note: When you set the COLLATING_SEQUENCE server option to ’I’, the
federated server will not pushdown the following:
v Queries that contain ORDER BY for character columns.

Chapter 9. Configuring access to Microsoft SQL Server data sources 151

v Queries that contain GROUP BY for character columns.
v Queries that contain DISTINCT for character columns.
v Queries that contain WHERE= for character columns.
v Queries that contain WHERE< for character columns
v Queries that contain WHERE> for character columns

An example of the CREATE SERVER statement with these server options is:
CREATE SERVER sqlserver TYPE MSSQLSERVER VERSION 7.0 WRAPPER djxmssql3
OPTIONS (NODE ’sqlnode’, DBNAME ’africa’, COLLATING_SEQUENCE ’I’)

After the server definition is created, use the ALTER SERVER statement to
add or drop server options.

Step 4: Create the user mappings
When you attempt to access a Microsoft SQL Server remote server, access is
granted if the authorization IDs are the same between the federated database
and the Microsoft SQL Server data source remote server. If a user’s
authorization ID to access the federated database differs from the user’s
authorization ID to access a data source, you need to define an association —a
user mapping— between the two authorization IDs so that distributed
requests can be sent to the data source.

Use the CREATE USER MAPPING statement to map the local user ID to the
Microsoft SQL Server server user ID and password; for example:
CREATE USER MAPPING FOR elizabeth SERVER sqlserver
OPTIONS (REMOTE_AUTHID ’liz’, REMOTE_PASSWORD ’abc123’)

where:

elizabeth
Is the local user ID that you are mapping to a user ID defined at the
Microsoft SQL Server remote server.

SERVER sqlserver
Is the name of the Microsoft SQL Server remote server that you
defined in the CREATE SERVER statement.

REMOTE_AUTHID ’liz’
Is the user ID at the Microsoft SQL Server remote server to which you
are mapping elizabeth. This value is case sensitive unless you set the
FOLD_ID server option to ’U’ or ’L’ in the CREATE SERVER
statement.

REMOTE_PASSWORD ’abc123’
Is the password associated with ’liz’. This value is case sensitive
unless you set the FOLD_PW server option to ’U’ or ’L’ in the
CREATE SERVER statement.

152 DB2 Federated Systems Guide

Note: You can use the DB2 special register USER to map the authorization ID
of the person issuing the CREATE USER MAPPING statement to the data
source authorization ID specified in the REMOTE_AUTHID user option. The
following is an example of the CREATE USER MAPPING statement which
includes the USER special register:
CREATE USER MAPPING FOR USER SERVER sqlserver
OPTIONS (REMOTE_AUTHID ’liz’, REMOTE_PASSWORD ’abc123’)

Step 5: Test the connection to the Microsoft SQL Server remote server
Test the connection to the Microsoft SQL Server remote server to ensure that
you can establish a connection, using the server definition and user mappings
you defined. Open a pass-through session and issue a SELECT statement
against the Microsoft SQL Server system tables. For example:
SET PASSTHRU server_name
SELECT count(*) FROM dbo.sysobjects
SET PASSTHRU RESET

If the SELECT returns a count, then your server definition and user mapping
are set up properly. If the SELECT returns an error, you may have to:
v Check that the Microsoft SQL Server remote server is started.
v Check the Microsoft SQL Server remote server to make sure that it is

configured for incoming connections.
v Check your user mapping to make sure that the settings for the

remote_authid and remote_password options are valid for connections to
the Microsoft SQL Server remote server.

v Check the ODBC drivers on the DB2 federated server to make sure that it is
installed and configured correctly to connect to the Microsoft SQL Server
remote server.

v Check your DB2 federated variables to make sure that they are correct for
working with the Microsoft SQL Server server. This includes the system
environment variables, db2dj.ini variables, and DB2 Profile Registry
(db2set) variable.

v Check your server definition and possibly drop it and create it again.
v Check your user mapping and possibly alter it or create another if

necessary.

Step 6: Create the nicknames for tables and views
The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a
nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the optimizer is read from the data source catalogs and put into the
global catalog on the federated server. Because some or all of the data source
catalog information might be used by the optimizer, it is advisable to update

Chapter 9. Configuring access to Microsoft SQL Server data sources 153

statistics (using the data source command equivalent to RUNSTATS) at the
data source before you create a nickname.

For each Microsoft SQL Server remote server that you defined, assign a
nickname to each table or view that you want to access on those servers. You
will use these nicknames, instead of the data source object names, when you
query the Microsoft SQL Server data sources. Nicknames can be up to 128
characters in length.

The federated server will fold the Microsoft SQL Server server, schema, and
table names to uppercase unless you enclose them in double quotation marks
(″). The following example shows a CREATE NICKNAME statement:
CREATE NICKNAME cust_africa FOR sqlserver.customers.egypt

where:

cust_egypt
Is a unique nickname for the Microsoft SQL Server table or view.

Note: the nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the
schema of the nickname will be the authentication ID of the user
creating the nickname.

sqlserver.customers.egypt
Is a three-part identifier for the remote object.
v sqlserver is the name you assigned to the Microsoft SQL Server

database server in the CREATE SERVER statement.
v customers is the name of the remote schema to which the table or

view belongs.
v egypt is the name of the remote table or view which you want to

access.

Repeat this step for each Microsoft SQL Server table or view for which you
want create nicknames. When you create the nickname, DB2 will use the
connection to query the data source catalog tables (Microsoft SQL Server
refers to these as system tables). This query tests your connection to the data
source using the nickname. If the connection does not work, you will receive
an error message.

Related concepts:

v “User mappings and user options” on page 15
v “Nicknames and data source objects” on page 16
v “Index specifications” on page 22

Related tasks:

154 DB2 Federated Systems Guide

v “Fast track to setting up your server and database” on page 39
v “Setting up the server to access Microsoft SQL Server data sources” on page

57

Related reference:

v Appendix C, “Server options for federated systems” on page 287
v Appendix D, “User options for federated systems” on page 297
v Appendix B, “Wrapper options for federated systems” on page 285

Tuning and troubleshooting the configuration to Microsoft SQL Server data
sources

Once you have set up the configuration to Microsoft SQL Server data sources,
you may want to modify the configuration to improve performance. For
example, you might want to set the DB2_DJ_COMM environment variable to
improve performance when the federated server accesses the Microsoft SQL
Server data source.

Improving performance by setting the DB2_DJ_COMM environment
variable (UNIX)

If you find that it takes an inordinate amount of time to access the Microsoft
SQL Server remote server, you can improve the performance by setting the
DB2_DJ_COMM environment variable. Setting the DB2_DJ_COMM
environment variable will load the wrapper when the federated server
initializes rather than when you attempt to access the data source.

Procedure:

To set the DB2_DJ_COMM environment variable:
1. Set the DB2_DJ_COMM environment variable to the wrapper library that

corresponds to the wrapper that you specified. Suppose that your
federated server is running AIX and the wrapper you are using is
MSSQLODBC3. The command to set the DB2_DJ_COMM environment
variable is:
db2set DB2_DJ_COMM=’libdb2mssql3.a’

Consult the following table for the proper library name.

Table 32. Microsoft SQL Server wrapper library names

Operating system on your
federated server

MSSQLODBC3 wrapper
library names

DJXMSSQL3 wrapper
library names

AIX libdb2mssql3.a none

HP-UX libdb2mssql3.so none

Chapter 9. Configuring access to Microsoft SQL Server data sources 155

Table 32. Microsoft SQL Server wrapper library names (continued)

Operating system on your
federated server

MSSQLODBC3 wrapper
library names

DJXMSSQL3 wrapper
library names

Linux libdb2mssql3.sl none

Solaris Operating
Environment

libdb2mssql3.so none

Windows NT and Windows
2000

none djxmssql3.dll

2. Recycle the DB2 instance to ensure that the environment variables are set
in the program. When you recycle the instance, the DB2 instance accepts
the changes that you made. Issue the following commands to recycle the
DB2 instance:
db2stop
db2start

Obtaining ODBC traces
If you are experiencing problems when accessing the data source, you can
obtain ODBC tracing information to analyze and resolve these problems.
Activating a trace impacts your system performance, therefore you should
turn off tracing once you have resolved the problems.

On Windows federated servers, use the trace tool provided by the ODBC Data
Source Administrator to ensure that the ODBC tracing works properly.

On UNIX federated servers, you need to set the DJXODBCTRACE variable in
the db2dj.ini file. For example:
DJXODBCTRACE=/home/user1/trace_dir/filename.xxx

You also need to set tracing on in the .odbc.ini file. For example, suppose
you are using the DataDirect ODBC 3.x driver. There should be an example of
the .odbc.ini file in the client directory. This file that contains a sample of
what is needed for trace files:
[ODBC]
Trace=0
TraceFile=/home/user1/trace_dir/filename.xxx
TraceDll=/djxclient/mssql/merant/3.7/lib/odbctrac.so
InstallDir=/djxclient/mssql/merant/3.7

The first line is set to Trace=0 when tracing is OFF and Trace=1 when tracing
is ON. The TraceFile should point to a path and file name that the instance
has write access to. This should also match the line that is placed in the
db2dj.ini file. DJXODBCTRACE=/home/user1/trace_dir/filename.xxx

Related concepts:

156 DB2 Federated Systems Guide

v “Environment Variables and the Profile Registry” in the Administration
Guide: Implementation

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

Chapter 9. Configuring access to Microsoft SQL Server data sources 157

158 DB2 Federated Systems Guide

Chapter 10. Configuring access to ODBC data sources

This chapter explains how to configure your federated server to access data
stored in ODBC data sources. It contains two sections:
v Adding ODBC data sources to a federated server
v Tuning and troubleshooting the configuration to ODBC data sources

Adding ODBC sources to a federated server

DB2 Relational Connect and DB2 Life Sciences Data Connect contain wrappers
that support specific ODBC data sources, such as Oracle, Microsoft SQL
Server, and Microsoft Excel. You will experience better performance if you use
the wrappers specifically designed for those data sources.

Use the ODBC wrapper to access ODBC data sources that are not supported
by DB2 Relational Connect and DB2 Life Sciences Data Connect.

The ODBC wrapper supports the Version 3.0 ODBC driver.

Configuring the federated server to access ODBC data sources involves
supplying the server with information about the ODBC data sources and
objects that you want to access. You can configure access to ODBC data
sources two ways:
v Through the DB2 Control Center
v Through the DB2 Command Center or command line processor (CLP)

The advantage of using the DB2 Control Center is that you do not have to key
in each statement and command. It is the easiest way to quickly configure
access to ODBC data sources. There are a few configuration tasks that you
cannot accomplish through the DB2 Control Center:
v Testing the connection to the ODBC server to validate the server definition

and user mappings.
v Adding or dropping column options.

The steps in this section assume that you are using the DB2 Command Center
or the command line processor (CLP) to configure access to ODBC data
sources.

Prerequisites:

v A federated server and database that are setup to access ODBC data
sources.

© Copyright IBM Corp. 1998 - 2002 159

v The ODBC driver installed and configured on the federated server.
v The proper variables setup. This includes: system environmetn variables,

db2dj.ini variables (UNIX only), and DB2 Profile Registry (db2set) variables.

The steps to accomplish these tasks are discussed in Setting up a federated
server and database.

Restrictions:

v The ODBC wrapper is only supported on federated servers that use the
Windows operating system.

v The ODBC wrapper might not function properly with data sources that do
not use schemas, such as Microsoft Excel, Microsoft Access, and IBM Red
Brick. There is a Microsoft Excel wrapper available with DB2 Life Sciences
Data Connect.

Procedure:

To add an ODBC data source to a federated server:
1. Prepare the federated server and federated database.
2. Create the wrapper.
3. Create the server definition and set the server options.
4. Create the user mappings.
5. Test the connection to the ODBC data source.
6. Create nicknames for ODBC data source tables and views.

These steps are explained in detail in this section. The operating
system-specific differences are noted where they occur.

Step 1: Prepare the federated server and database
It is important for you to verify that the ODBC System DSN has been set to
connect to the ODBC data source. Use the ODBC Data Source Administrator
to configure the DSN. You can check this setting through the Control Panel:
1. Open the Control Panel through the Start menu.
2. Double-click on ODBC Data Sources to access the ODBC device manager.
3. Click on the System DSN tab to confirm that the System DSN you defined

for the ODBC driver appears on the list. The node name for the ODBC
data source must be defined in the System DSN.

Test the connection to ensure that the ODBC Systems DSN is able to connect
to the ODBC data source. You can test the connection by selecting Configure
in the ODBC Data Source Administrator window.

160 DB2 Federated Systems Guide

Step 2: Create the wrapper
To specify the wrapper that will be used to access ODBC data sources, use the
CREATE WRAPPER statement. The following example shows a CREATE
WRAPPER statement:
CREATE WRAPPER odbc_wrapper LIBRARY ’db2rcodbc.dll’

where:

odbc_wrapper
The name you assign to the wrapper that is being registered in the
federated database.

LIBRARY ’db2rcodbc.dll’
Specifies the library name for the ODBC wrapper. The LIBRARY name
must be ’db2rcodbc.dll’.

You need to create the ODBC wrapper only once regardless of the number of
different ODBC data sources you will access. You will specify the data source
location when you create the server definition. You will specify the exact data
source object when you create the nickname.

Step 3: Create the server definition
In the federated database, you must define each ODBC data source server that
you want to access. You create a server definition using CREATE SERVER
statement. For example:
CREATE SERVER mssql_cust TYPE odbcserver
VERSION 3.0 WRAPPER odbc_wrapper
OPTIONS (NODE ’mssql’)

where:

mssql_cust
Is a name that you assign to the ODBC data source server. This name
must be unique. Duplicate server names are not allowed.

TYPE odbcserver
Specifies the type of data source to which you are configuring access.
For the ODBC wrapper, the server type must be odbcserver.

VERSION 3.0
Is the version of ODBC driver that you want to access. The supported
version is ODBC driver Version 3.0.

WRAPPER odbc_wrapper
Is the wrapper name you specified in the CREATE WRAPPER
statement.

Chapter 10. Configuring access to ODBC data sources 161

NODE ’mssql’
The name of the node, the system DSN name, assigned to the ODBC
data source when the DSN is defined. This value is case sensitive.

Although NODE is specified as an option in the CREATE SERVER
statement, it is required for ODBC data sources.

Step 4: Create the user mappings
When you attempt to access an ODBC data source, access is granted if the
authorization IDs are the same between the federated database and the ODBC
data source. If a user’s authorization ID to access the federated database
differs from the user’s authorization ID to access a data source, you need to
define an association—a user mapping—between the two authorization IDs so
that distributed requests can be sent to the data source.

Use the CREATE USER MAPPING statement to map the local user ID to the
ODBC data source user ID and password; for example:
CREATE USER MAPPING FOR elizabeth SERVER mssql_cust
OPTIONS (REMOTE_AUTHID ’liz’, REMOTE_PASSWORD ’abc123’)

where:

elizabeth
Is the local user ID that you are mapping to a user ID defined at the
ODBC data source.

mssql_cust
Is the name of the ODBC data source that you defined in the CREATE
SERVER statement.

’liz’ Is the user ID at the ODBC data source to which you are mapping
elizabeth. This value is case sensitive unless you set the FOLD_ID
server option to ’U’ or ’L’ in the CREATE SERVER statement.

’abc123’
Is the password associated with ’liz’. This value is case sensitive
unless you set the FOLD_PW server option to ’U’ or ’L’ in the
CREATE SERVER statement.

Note: You can use the DB2 special register USER to map the authorization ID
of the person issuing the CREATE USER MAPPING statement to the data
source authorization ID specified in the REMOTE_AUTHID user option. The
following is an example of the CREATE USER MAPPING statement which
includes the USER special register:
CREATE USER MAPPING FOR USER SERVER mssql_cust
OPTIONS (REMOTE_AUTHID ’liz’, REMOTE_PASSWORD ’abc123’)

162 DB2 Federated Systems Guide

Step 5: Test the connection to the ODBC data source
Test the connection to the ODBC data source server to ensure that you can
establish a connection, using the server definition and user mappings you
defined. Open a pass-through session and issue a SELECT statement against
the ODBC data source system tables. For example:
SET PASSTHRU
SELECT COUNT(*) FROM schema_name.table_name
SET PASSTHRU RESET

where schema_name is the schema name at the remote ODBC data source, and
table_name is the table name at the remote ODBC data source.

If the SELECT returns a count, then your server definition and user mapping
are set up properly. If the SELECT returns an error, you may have to:
v Check that the ODBC remote server is started.
v Check the ODBC data source server to make sure that it is configured for

incoming connections.
v Check your user mapping to make sure that the settings for the

remote_authid and remote_password options are valid for connections to
the ODBC data source.

v Check the ODBC drivers on the DB2 federated server to make sure that it is
installed and configured correctly to connect to the ODBC data source
server. Use the ODBC Data Source Administrator tool to check the driver.

v Check your server definition and possibly drop it and create it again.
v Check your user mapping and possibly alter it or create another if

necessary.

Step 6: Create the nicknames for tables and views
The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a
nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the optimizer is read from the data source catalogs and put into the
global catalog on the federated server. Because some or all of the data source
catalog information might be used by the optimizer, it is advisable to update
statistics (using the data source command equivalent to RUNSTATS) at the
data source before you create a nickname.

For each ODBC data source server that you defined, assign a nickname to
each table or view that you want to access on those servers. You will use
these nicknames, instead of the data source object names, when you query the
ODBC data sources. Nicknames can be up to 128 characters in length.

Chapter 10. Configuring access to ODBC data sources 163

For example, suppose that you define the nickname cust_europe to represent a
Microsoft SQL Server table called italy with a schema_name of customers. The
SQL statement SELECT * FROM cust_europe is allowed from the federated
server. However, the statement SELECT * FROM mssql_cust.″customers″.″italy″
is not allowed.

Use the CREATE NICKNAME statement to register nicknames for the ODBC
data source tables and views you want to access, for example:
CREATE NICKNAME cust_europe FOR mssql_cust."customers"."italy"

cust_europe
Is a unique nickname for the table or view. The nickname must be
unique within the schema.

Note: the nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the
schema of the nickname will be the authentication ID of the user
creating the nickname.

mssql_cust.″customers″.″italy″
Is a three-part identifier for the remote object.
v mssql_cust is the name you assigned to the ODBC database server in

the CREATE SERVER statement.
v customers is the name of the remote schema to which the table or

view belongs.
v italy is the name of the remote table or view which you want to

access.

ODBC nicknames are case sensitive. Enclose both the remote schema_name and
table_name in double quotation marks (″), otherwise DB2 will fold the server,
remote schema_name, and remote table_name to uppercase.

Repeat this step for each ODBC table or view for which you want to create
nicknames. When you create the nickname, DB2 will use the connection to
query the data source catalog tables. This query tests your connection to the
ODBC data source using the nickname. If the connection does not work, you
will receive an error message.

Related concepts:

v “Nicknames and data source objects” on page 16

Related tasks:

v “Fast track to setting up your server and database” on page 39
v “Setting up the server to access ODBC data sources” on page 62

Related reference:

164 DB2 Federated Systems Guide

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

v Appendix E, “Column options for federated systems” on page 299
v Appendix C, “Server options for federated systems” on page 287
v Appendix D, “User options for federated systems” on page 297
v Appendix B, “Wrapper options for federated systems” on page 285

Tuning and troubleshooting the configuration to ODBC data sources

Once you have set up the configuration to ODBC data sources, you may want
to modify the configuration to improve performance. For example, you might
want to set the DB2_DJ_COMM environment variable to improve
performance when the federated server accesses the ODBC data source.

Improving performance by setting the DB2_DJ_COMM environment
variable

If you find that it takes an inordinate amount of time to access the ODBC
remote server, you can improve the performance by setting the
DB2_DJ_COMM environment variable. Setting the DB2_DJ_COMM
environment variable will load the wrapper when the federated server
initializes rather than when you attempt to access the data source.

Procedure:

To set the DB2_DJ_COMM environment variable:
1. Set the DB2_DJ_COMM environment variable to the wrapper library that

corresponds to the wrapper that you specified. Suppose that your
federated server uses Windows NT and the wrapper you are using is
ODBC_WRAPPER. The command to set the DB2_DJ_COMM environment
variable is:
db2set DB2_DJ_COMM=’db2rcodbc.dll’

The DB2_DJ_COMM environment variable will be added to the Windows
Registry.

2. Recycle the DB2 instance to ensure that the environment variables are set.
When you recycle the instance, the DB2 instance accepts the changes that
you made. Issue the following commands to recycle the DB2 instance:
db2stop
db2start

Chapter 10. Configuring access to ODBC data sources 165

Obtaining ODBC traces
If you are experiencing problems when accessing the data source, you can
obtain ODBC tracing information to analyze and resolve these problems.
Activating a trace impacts your system performance, therefore you should
turn off tracing once you have resolved the problems.

On Windows federated servers, use the trace tool provided by the ODBC Data
Source Administrator to ensure that the ODBC tracing works properly.

Related concepts:

v “Environment Variables and the Profile Registry” in the Administration
Guide: Implementation

Related tasks:

v “Setting up the server to access ODBC data sources” on page 62

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

166 DB2 Federated Systems Guide

Chapter 11. Configuring access to OLE DB data sources

This chapter explains how to configure your federated server to access data
stored in OLE DB data sources. You can create table functions to query the
OLE DB data sources. The chapter contains two sections:
v Adding ODE DB data sources to a federated server
v Registering a user-defined OLE DB external table function

Adding OLE DB data sources to a federated server

Microsoft OLE DB is a set of OLE/COM interfaces that provide applications
with uniform access to data stored in diverse information sources. The OLE
DB component DBMS architechture definesOLE DB consumers and OLE DB
providers. An OLE DB consumer is any system or application that consumes
OLE DB inerfeaces. An OLE DB provider is a component that exposes OLE
DB interfaces.

The OLE DB wrapper enables you to access OLE DB providers that are
compliant with Microsoft OLE DB 2.0 (or later). Configuring the federated
server to access OLE DB data sources, involves supplying the server with
information about the OLE DB providers.

After you configure access to the OLE DB data source, use the CREATE
FUNCTION statement to register a user-defined OLE DB external table
function in the federated database.

You can configure access to OLE DB data sources through the DB2 Command
Center or command line processor (CLP).

Prerequisites:

v A federated server and database that are setup to access OLE DB data
sources.

v The OLE DB 2.0 (or later) driver and OLE DB provider installed and
configured on the federated server.

v The proper variables setup. This includes: system environmetn variables,
db2dj.ini variables (UNIX only), and DB2 Profile Registry (db2set) variables.

The steps to accomplish these tasks are discussed in Setting up a federated
server and database.

Restrictions:

© Copyright IBM Corp. 1998 - 2002 167

The OLE DB wrapper is supported on DB2 federated servers that run
Windows NT.

Procedure:

To add an OLE DB data source to a federated server:
1. Create the wrapper.
2. Create the server definition and set the server options.
3. Create the user mappings.

These steps are explained in detail in this section.

Step 1: Create the wrapper
To specify the wrapper that will be used to access OLE DB data sources, use
the CREATE WRAPPER statement. The following example shows the
CREATE WRAPPER statement for the OLE DB wrapper:
CREATE WRAPPER OLEDB

Recommendation: IBM recommends that you use the default wrapper name
(OLEDB). When you create the wrapper using the default name, the federated
server automatically picks up the default library name associated with that
the wrapper. If the wrapper name conflicts with an existing wrapper name in
the federated database, you can substitute the default wrapper name with a
name you choose. If you use a name that is different than one of the default
names, you must include the LIBRARY parameter in the CREATE WRAPPER
statement. For example:
CREATE WRAPPER mywrapper LIBRARY ’db2oledb.dll’

Step 2: Create the server definition
In the federated database, you must define each OLE DB server that you want
to access. You create a server definition using CREATE SERVER statement. For
example:
CREATE SERVER Nwind WRAPPER OLEDB
OPTIONS (CONNECTSTRING ’Provider=Microsoft.Jet.OLEDB.4.0;

Data Source=c:\msdasdk\bin\oledb\nwind.mdb’,
COLLATING_SEQUENCE ’Y’)

where:

Nwind Is a name that you assign to the OLE DB data source. This name must
be unique. Duplicate server names are not allowed.

WRAPPER OLEDB
Is the wrapper name that you specified in the CREATE WRAPPER
statement.

168 DB2 Federated Systems Guide

CONNECTSTRING ’Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=c:\msdasdk\bin\oledb\nwind.mdb’

Provides initialization properties needed to connect to a data source.

The string contains a series of keyword and value pairs separated by
semicolons. The equal sign(=) separates each keyword and it’s value.
Keywords are the descriptions of the OLE DB initialization properties
(property set DBPROPSET_DBINT) or provider-specific keywords.

For the complete syntax and semantics of the CONNECTSTRING
option, see the Microsoft OLE DB 2.0 Programmer’s Reference and Data
Access SDK, Microsoft Press, 1998.

COLLATING_SEQUENCE ’Y’
Specifies whether the data source uses the same collating sequence as
DB2 for UNIX and Windows.

Valid values are ″Y″ (the same collating sequence is used) and ’N’ (a
different collating sequence is used). If the COLLATING_SEQUENCE
option is not specified, it is assumed that the data source has a
different collating sequence than the DB2 collating sequence.

Step 3: Create the user mappings
When you attempt to access a OLE DB data source, access is granted if the
authorization IDs are the same between the federated database and the OLE
DB server. If a user’s authorization ID to access the federated database differs
from the user’s authorization ID to access a data source, you need to define
an association —a user mapping— between the two authorization IDs. This
will enable the federated database to send distributed requests to the data
source.

Use the CREATE USER MAPPING statement to map the local user ID to the
OLE DB server user ID and password; for example:
CREATE USER MAPPING FOR laura SERVER Nwind
OPTIONS (REMOTE_AUTHID ’lulu’, REMOTE_PASSWORD ’4t9ers’)

where:

laura Is the local user ID that you are mapping to a user ID defined at the
OLE DB data source.

SERVER Nwind
Is the name of the OLE DB server that you defined in the CREATE
SERVER statement.

REMOTE_AUTHID ’lulu’
Is the user ID at the OLE DB server to which you are mapping laura.
This value is case-sensitive.

Chapter 11. Configuring access to OLE DB data sources 169

REMOTE_PASSWORD ’4t9ers’
Is the password associated with ’lulu’. This value is case-sensitive.

Note: You can use the DB2 special register USER to map the authorization ID
of the person issuing the CREATE USER MAPPING statement to the data
source authorization ID specified in the REMOTE_AUTHID user option. The
following is an example of the CREATE USER MAPPING statement which
includes the USER special register:
CREATE USER MAPPING FOR USER SERVER Nwind
OPTIONS (REMOTE_AUTHID ’lulu’, REMOTE_PASSWORD ’4t9ers’)

Related concepts:

v “Object Linking and Embedding Database (OLE DB) Table Functions” in
the Application Development Guide: Building and Running Applications

Related tasks:

v “Fast track to setting up your server and database” on page 39
v “Registering a user-defined OLE DB external table function” on page 170

Registering a user-defined OLE DB external table function

After you configure access to the OLE DB data source, use the CREATE
FUNCTION statement to register a user-defined OLE DB external table
function.

Prerequisites:

A federated server and database that are set up to access OLE DB data
sources. The OLE DB 2.0 (or higher) driver and OLE DB provider installed
and configured on the federated server.

A federated server and database that are configured to access OLE DB data
sources. Configuring the federated server involves: creating the wrapper,
creating the server definition, and creating the user mappings.

Restrictions:

OLE DB table functions can be created on any operating system, but can only
be executed on operating systems supported by Microsoft OLE DB.

Procedure:

To access data from an OLE DB provider, use the CREATE FUNCTION
statement to register a user-defined OLE DB external table function. When

170 DB2 Federated Systems Guide

you create the function, use the server name you supplied in the CREATE
SERVER statement to identify the OLE DB provider. For example:
CREATE FUNCTION orders () RETURNS
TABLE (orderid INTEGER, ...)
LANGUAGE OLEDB EXTERNAL NAME ’Nwind!orders’

where:

orders ()
Is the name you give to the function.

RETURNS TABLE (orderid INTEGER)
Specifies the output of the function is a table and lists the column
names and data types of the output.

LANGUAGE OLEDB
Indicates the DB2 federated database manager will deploy a built-in
generic OLE DB consumer to retrieve data from the OLE DB provider.

EXTERNAL NAME ’Nwind!orders’
Identifies the external table and an OLE DB provider.

The parameter specified is used to establish a connection and session
with a OLE DB provider and to retrieve data from a rowset.

Related tasks:

v “Adding OLE DB data sources to a federated server” on page 167
v “Fast track to setting up your server and database” on page 39

Related reference:

v Appendix C, “Server options for federated systems” on page 287

Chapter 11. Configuring access to OLE DB data sources 171

172 DB2 Federated Systems Guide

Part 3. Using, administering, and programming the
federated system

© Copyright IBM Corp. 1998 - 2002 173

174 DB2 Federated Systems Guide

Chapter 12. Working with the federated system

This chapter describes how to access and update data at the data sources. The
topics in this chapter are:
v Working with nicknames
v Transaction support in a federated system
v Selecting data in a federated system
v Modifying data in a federated system

Working with nicknames

When you want to select or modify data source data, you query the
nicknames using the SELECT, INSERT, UPDATE, and DELETE statements.
You submit queries in DB2 SQL to the federated database. You can join data
from local tables and remote data sources using a single SQL statement, as if
all the data is local. For example, you can join data that is located in:
v A local DB2 for Windows table in the federated database, an Oracle table,

and a Sybase view.
v A DB2 for z/OS table on one server, a DB2 for z/OS table on another

server, and an Excel spreadsheet.

By processing SQL statements as if the data sources were ordinary relational
tables or views within the federated database, the federated system can join
relational data with data in non-relational formats.

Tables and views that reside in the federated database are local objects. You do
not create nicknames for these objects. You use the actual object name in your
queries.

Remote objects are objects not located in the federated database. For example:
v Tables and views in another DB2 database instance on the federated server.

You need to create nicknames for these objects.
v Data source objects that reside in another data source, such as: Oracle,

Sybase, Documentum, and ODBC. You need to create nicknames for these
objects.

Procedure:

Before you query the data sources, make sure that you understand how to
effectively leverage the capabilities of the federated system:

© Copyright IBM Corp. 1998 - 2002 175

1. SQL statements you can use with nicknames
2. Accessing new data source objects
3. Accessing data sources using PASSTHRU
4. Accessing heterogeneous data through federated views

Related concepts:

v “Create the user mappings and test the connection to the data source” on
page 94

Working with nicknames—details

The SQL statements you can use with nicknames

A federated system is designed to make it easy to access data, regardless of
where it is actually stored. This is accomplished by creating nicknames for all
the data source objects (such as tables and views) that you want to access.

For example, if the nickname DEPT is created to represent the remote table
EUROPE.PERSON.DEPT, you would use the statement SELECT * FROM
DEPT to query information in the remote table. You are querying the
nickname instead of having to remember the underlying data source
information. When you create a query, you do not have to be concerned with
issues like:
v The name of the table at the data source.
v The server on which it resides.
v The type of DBMS on which the table resides, such as Informix and Oracle.
v The query language or SQL dialect that the DBMS uses.
v The data types mappings between the data source and DB2.

All the underlying metadata stored in the federated database catalog as part
of the federated system setup and configuration, provide the federated server
with the information it needs to process your queries.

After the federated system is set up you can use the nicknames to query the
data sources, or further enhance the federated system configuration.

The following table lists the SQL statements which support the use of
nicknames:

176 DB2 Federated Systems Guide

Table 33. Common SQL statements that support the use of nicknames.

SQL statement Description Authorization required

ALTER
NICKNAME

Modifies an existing nickname
by changing the local column
name, the local data type, or the
federated column options. The
table or view at the data source
is not affected.

v SYSADM or DBADM

v ALTER or CONTROL
privilege on the nickname.

v ALTERIN privilege on the
schema, if the schema name
of the nickname exists

v Definer of the nickname, as
recorded in the DEFINER
column of the catalog view
for the nickname

COMMENT ON Adds or replaces comments in
the catalog descriptions of
various objects, including:
functions, function mappings,
indexes, nicknames, servers,
server options, type mappings,
wrappers.

v SYSADM or DBADM

v ALTER or CONTROL
privilege on the object.

v ALTERIN privilege on the
schema

v Definer of the object, as
recorded in the DEFINER
column of the catalog view
for the object.

CREATE ALIAS Defines an alias for a nickname. v SYSADM or DBADM

v IMPLICIT_SCHEMA
authority on the database, if
the implicit or explicit schema
name of the alias does not
exist.

v CREATEIN privilege on the
schema, if the schema name
of the alias refers to an
existing schema.

CREATE INDEX Used to create an index
specification (metadata) that
indicates to the query optimizer
that a data source object has an
index. No actual index is
created, only the specification.

v SYSADM or DBADM

v Or — CONTROL or INDEX
privilege on the underlying
data source object.

v And either —
IMPLICIT_SCHEMA
authority on the database or
CREATEIN privilege on the
schema.

Chapter 12. Working with the federated system 177

Table 33. Common SQL statements that support the use of nicknames. (continued)

SQL statement Description Authorization required

DELETE Deletes rows from the data
source object (such as a table or
view) that a nickname has been
created for.

v SYSADM or DBADM

v DELETE privilege on the
nickname and DELETE
privilege on the underlying
data source object.

v CONTROL privilege on the
underlying data source object.

DROP Deletes an object, such as a
nickname, federated view, index
specification. The table, view, or
index at the data source is not
affected.

v SYSADM or DBADM

v DROPIN privilege on the
schema for the object.

v CONTROL privilege on the
object.

GRANT Grants privileges on nicknames
and federated views, such as
ALTER, DELETE, INDEX,
INSERT, SELECT, UPDATE.

v SYSADM or DBADM

v WITH GRANT OPTION for
each identified privilege.

v CONTROL privilege on the
object.

INSERT Inserts rows into the data
source object (such as a table or
view) that a nickname has been
created for.

v SYSADM or DBADM

v INSERT privilege on the
nickname and INSERT
privilege on the underlying
data source object.

v CONTROL privilege on the
underlying data source object.

LOCK TABLE Will cause the remote object at
the data source to be locked.
Prevents concurrent application
processes from changing a data
source table that a nickname has
been created for.

v SYSADM or DBADM

v SELECT privilege on the
underlying table.

v CONTROL privilege on the
underlying table.

REVOKE Revokes privileges on
nicknames and federated views,
such as ALTER, DELETE,
INDEX, INSERT, SELECT,
UPDATE.

v SYSADM or DBADM

v CONTROL privilege on the
object.

178 DB2 Federated Systems Guide

Table 33. Common SQL statements that support the use of nicknames. (continued)

SQL statement Description Authorization required

SELECT Selects rows from the data
source object (such as a table or
view) that a nickname has been
created for.

v SYSADM or DBADM

v SELECT privilege on the
nickname and SELECT
privilege on the underlying
data source object.

v CONTROL privilege on the
underlying data source object.

UPDATE Updates the values in specified
columns in rows in the data
source object (such as a table or
view) that a nickname has been
created for.

v SYSADM or DBADM

v UPDATE privilege on the
nickname and UPDATE
privilege on the underlying
data source object.

v CONTROL privilege on the
underlying data source object.

When a query is submitted to the federated database, the authorization
privileges on the nickname in the query are checked. The authorization
requirements of the data source object referenced by the nickname are only
applied when the query is actually processed.

To select, insert, update, or delete data using a nickname, the privileges held
by the authorization ID of the statement must include:
v The appropriate privilege on the nickname (for the federated database to

accept the request)
v The appropriate privilege on the underlying table object (for the data source

to accept the request)

For example to update a data source using a nickname, you need UPDATE
privilege on the nickname and UPDATE privilege on the underlying data
source object.

Related reference:

v “COMMENT statement” in the SQL Reference, Volume 2

v “CREATE ALIAS statement” in the SQL Reference, Volume 2

v “CREATE INDEX statement” in the SQL Reference, Volume 2

v “DELETE statement” in the SQL Reference, Volume 2

v “DROP statement” in the SQL Reference, Volume 2

v “GRANT (Database Authorities) statement” in the SQL Reference, Volume 2

v “INSERT statement” in the SQL Reference, Volume 2

Chapter 12. Working with the federated system 179

v “LOCK TABLE statement” in the SQL Reference, Volume 2

v “REVOKE (Table, View, or Nickname Privileges) statement” in the SQL
Reference, Volume 2

v “SELECT statement” in the SQL Reference, Volume 2

v “UPDATE statement” in the SQL Reference, Volume 2

v “ALTER NICKNAME statement” in the SQL Reference, Volume 2

Accessing new data source objects

Periodically, you will want to access data source objects that do not have
nicknames. These might be new objects added to a data source, such as a
newly created view. These might be existing objects that were not registered
with the federated server when it was initially setup. In either case, these
objects are new to the federated server. To access these new objects, you need
to create nicknames for them using the CREATE NICKNAME statement.

Prerequisites:

The federated system needs to be configured to access the data source. A
server definition for the data source server on which the object resides needs
to exist in the federated database. You create a server definition using
CREATE SERVER statement.

Restrictions:

You must have one of the following authorizations to issue the CREATE
NICKNAME statement:
v SYSADM or DBADM
v IMPLICIT_SCHEMA authority on the federated database, if the implicit or

explicit schema name of the nickname does not exist.
v CREATEIN privilege on the schema, if the schema name of the nickname

exists

And the remote user ID in your user mapping must have SELECT privilege at
the data source.

The following example shows a CREATE NICKNAME statement:
CREATE NICKNAME nickname_name FOR server_name."remote_schema"."object_name"

where:

nickname_name
Is a unique nickname for the data source object.

Note: The nickname is a two-part name—the schema and the
nickname. If you omit the schema when creating the nickname, the

180 DB2 Federated Systems Guide

schema of the nickname will be the authentication ID of the user
creating the nickname. Nicknames can be up to 128 characters in
length.

server_name.″remote_schema″.″object_name″
Is a three-part identifier for the remote data source object.
v server_name is the name assigned to the data source server in the

CREATE SERVER statement.
v remote_schema is the name of the remote schema to which the object

belongs.
v object_name is the name of the remote object that you want to

access.

Related concepts:

v “Fast track to configuring your data sources” on page 85

Accessing data sources using PASSTHRU

You can submit SQL statements directly to data sources by using a special
mode called pass-through. You submit SQL statements in the SQL dialect used
by the data source. Use a pass-through session when you want to perform an
operation that is not possible with the DB2 SQL/API. For example, use a
pass-through session to create a procedure, create an index, or perform
queries in the native dialect of the data source.

Note: Currently, the data sources that support pass-through, only accept SQL
statements in a pass-through session. In the future, it is possible that data
sources will support pass-though using a data source language other than
SQL.

Similarly, you can use a pass-through session to perform actions that are not
supported by SQL, such as certain administrative tasks. However, you cannot
use a pass-through session to perform all administrative tasks. For example,
you can run the statistics utility used by the data source, but you cannot start
or stop the remote database.

You can query only one data source at a time in a pass-through session. Use
the SET PASSTHRU command to open a session. When you use the SET
PASSTHRU RESET command it closes the pass-through session. If you use the
SET PASSTHRU command instead of SET PASSTHRU RESET, the current
pass-through session is closed and a new pass-through session is opened.

Use the DB2 CLP to open a pass-through session.

Pass-through sessions do not support non-relational data sources.

Chapter 12. Working with the federated system 181

Related concepts:

v “Pass-through sessions” on page 11
v “Using pass-through to query data sources directly” on page 277

Accessing heterogeneous data through federated views

A federated view is a view in the federated database whose base tables are
located at remote data sources. The base tables are referenced in the federated
view by nicknames, instead of by the data source table names. When you
query from a federated view, data is retrieved from the remote data source.
The action of creating a federated database view of data source data is
sometimes called “creating a view on a nickname”. This is because you
reference the nicknames instead of the data sources when you create the view.

These views offer a high degree of data independence for a globally
integrated database, just as views defined on multiple local tables do for
centralized relational database managers.

Use the CREATE FEDERATED VIEW statement to create a federated view.

You must have one of the following authorizations to issue the CREATE
FEDERATED VIEW statement:
v SYSADM or DBADM
v Or for each nickname in any fullselect:

– CONTROL or SELECT privilege on the underlying table or view
– and at least one of the following:

- IMPLICIT_SCHEMA authority on the federated database, if the
implicit or explicit schema name of the view does not exist.

- CREATEIN privilege on the schema, if the schema name of the view
refers to an existing schema.

Privileges for the underlying objects are not considered when defining a view
on a federated database nickname. Authorization requirements of the data
source for the table or view referenced by the nickname are applied when the
query is processed. The authorization ID of the statement may be mapped to
a different remote authorization ID by a user mapping.

Federated views that are created from more than one nicknamed data source
object are read-only views.

Federated views that are created from only one nicknamed data source object
may or may not be read-only views. A federated view created from one
non-relational data source is read only. A federated view created from a

182 DB2 Federated Systems Guide

relational data source might allow updates, depending on what is included in
the CREATE FEDERATED VIEW statement.

Related concepts:

v “Create the user mappings and test the connection to the data source” on
page 94

Related tasks:

v “Creating and using federated views” on page 261

Transaction support in a federated system

Before you submit transactions to the federated database, it is important that
you understand the type of transactions supported in a federated system.

Single-site updates and two-phase commit:

A transaction is commonly referred to in DB2® as a unit of work. A unit of
work is a recoverable sequence of operations within an application process. A
unit of work is used by the database manager to ensure that a database is in a
consistent state. Any reading from or writing to the database is done within a
unit of work. A point of consistency (or commit point) is a time when all
recoverable data that an application accesses is consistent with related data.

A unit of work is implicitly begun when any data in the data base is read
from or written to. An application must end a unit of work by issuing either a
COMMIT or a ROLLBACK statement. The COMMIT statement makes
permanent all changes made within a unit of work. The ROLLBACK
statement removes these changes from the database.

Changes made by the unit of work become visible to other applications after a
successful COMMIT. If the application ends normally without either of these
statements being explicitly issued, the unit of work is automatically
committed.

Recommendation: Your applications should always explicitly commit or roll
back units of work. If an application ends abnormally in the middle of a unit
of work, the unit of work is automatically rolled back.

A transaction can involve one or more databases. A transaction that involves
two or more databases is a distributed unit of work (DUOW). In a DUOW
that involves reading from one or more databases to update another database,
or in a non-distributed unit of work, each COMMIT is processed in one
operation. Accordingly, the operation is called a one-phase commit.

Chapter 12. Working with the federated system 183

In a DUOW involving updates of multiple databases, data consistency is
important. The two-phase commit protocol is commonly used to ensure data
consistency across multiple databases within a DUOW. Two-phase commit
will be supported on federated systems in a future release.

Using a federated system without two-phase commit support:

This table shows the location where an update is supported by the type of
transaction you want to perform. For example, if you want to perform a
transaction in a PASSTHRU session, you will only be able to update remote
data source objects. A PASSTHRU session cannot be used to update local data
source objects.

Table 34. Federated update matrix

Location where the update is supported

Type of update you want
to perform

Local update Remote update

Local update Y N

Transparent DDL Y Y

Remote INSERT, UPDATE,
DELETE

N Y

PASSTHRU N Y

This table shows the next type of update supported based on the last update
you performed. For example, suppose you just performed an INSERT on a
remote data source. Your next action can be another remote INSERT,
UPDATE, or DELETE operations on the same data source server. You can also
open a PASSTHRU session to perform an update on that same data source
server. However, you can not perform a local update since that would require
you to change to another server. Before you can peform update operations on
another server, you must issue a COMMIT or ROLLBACK statement.

Table 35. Federated compatability

Next type of update permitted on the same server before you must
issue a COMMIT or ROLLBACK statement

Last type of
update you
performed

Local update Transparent
DDL

Remote
INSERT,
UPDATE,
DELETE

PASSTHRU

Local update Y N N N

Transparent
DDL

N N N N

184 DB2 Federated Systems Guide

Table 35. Federated compatability (continued)

Next type of update permitted on the same server before you must
issue a COMMIT or ROLLBACK statement

Last type of
update you
performed

Local update Transparent
DDL

Remote
INSERT,
UPDATE,
DELETE

PASSTHRU

Remote
INSERT,
UPDATE,
DELETE

N N Y Y

PASSTHRU N N Y Y

Note: Transparent DDL is not compatible with any other operation.

If the current unit of work included an update, include a COMMIT or
ROLLBACK statement at the end of the unit of work. The COMMIT or
ROLLBACK must be made before proceeding with another unit of work or to
another data source.

Considerations with Transparent DDL:

COMMIT or ROLLBACK statements need to be issued before and after
transparent DDL transactions. Transparent DDL creates a table on a remote
data source and creates a nickname in the local federated database for the
remote table. Because transparent DDL is updating both local and remote
objects at the same time, each transparent DDL statement has to be the only
update within the transaction. If there is any update prior to the transparent
DDL transaction, a COMMIT or ROLLBACK statement has to be issued before
the transparent DDL transaction. Likewise, a COMMIT or ROLLBACK
statement has to be issued after the transparent DDL transaction, before any
other update can occur.

Considerations with PASSTHRU:

All statements sent through PASSTHRU sessions are treated as updates by the
federated server. The purpose of this is to ensure data integrity. If a statement
set through a PASSTHRU session is successful, it is recorded as an update
regardless of the type of statement. This includes SELECT statements. If a
statement is not successful, it is not recorded. Likewise, if a PASSTHRU
session is empty, a statement following the empty PASSTHRU session will not
be blocked.

Considerations with the auto-commit option in the DB2 CLP:

Chapter 12. Working with the federated system 185

By default, the DB2 CLP will automatically commit each SQL statement
executed. If you elect to turn the auto-commit command option OFF, make
certain you explicitly issue COMMIT and ROLLBACK statements at the end
of each transaction.

Recommendation: Set the auto-commit command option ON for distributed
units of work whenever applicable. If you have set this command option OFF,
you can turn it on by issuing this command:
UPDATE COMMAND OPTIONS USING c ON

INSERT, UPDATE, and DELETE privileges:

The privileges required to issue INSERT, UPDATE, and DELETE statements
on nicknames are similar to the privileges required to issue these statements
on tables:
v You can grant or revoke SELECT, INSERT, UPDATE, and DELETE

privileges on a nickname.
v You must hold adequate privileges on the data source to perform select,

insert, update, or delete operations on the underlying object.

When a query is submitted to the federated database, the authorization
privileges on the nickname in the query are checked. The authorization
requirements of the data source object referenced by the nickname are only
applied when the query is actually processed. If you do not have SELECT
privilege on the nickname, then you can not select from the object the
nickname refers to. Likewise, just because you have a privilege, such as
UPDATE, on the nickname does not mean you will automatically be
authorized to update the object that the nickname represents. Passing the
privileges checking at the federated server does not imply you will pass the
privilege checking at the remote data source. Through user mappings, a
federated server user ID is mapped to the data source user ID. The privilege
restrictions will be enforced at the data source.

Restrictions:

The Sybase DBLIB wrapper is read-only, you can not perform INSERT,
UPDATE, or DELETE operations on a nickname that uses the DBLIB wrapper.

The ODBC wrapper is read-only, you can not perform INSERT, UPDATE, or
DELETE operations on a nickname that uses the ODBC wrapper.

The wrappers provided with DB2 Life Sciences Data Connect are read-only,
you can not perform INSERT, UPDATE, or DELETE operations on a nickname
that use these wrappers.

186 DB2 Federated Systems Guide

Update of nicknames has the following restrictions:
v A nicknamed object whose data source does not permit update cannot be

updated.
v A federated view with UNION ALL statements for multiple nicknamed

object is a read only view. It cannot be updated.

Referential integrity:

You can not define a constraint on a nickname. In the federated environment,
DB2 does not compensate for referential integrity differences between data
sources. DB2 does not interfere with referential integrity enforcement at the
data sources. However, referential integrity constraints at a data source can
affect nickname updates. For example, suppose an insert into a table at a data
source violates a referential integrity constraint at that data source. DB2 maps
the resulting error to a DB2 error. Referential integrity between data sources is
the responsibility of the applications.

LOBs:

There are three types of LOBs: character large objects (CLOBs), double-byte
character large objects (DBCLOBs), and binary large objects (BLOBs).

Using DB2 for UNIX® and Windows® Version 8, you can perform read
operations against LOBs located in all the relational data sources.
Additionally, you can perform write operations against LOBs located in Oracle
(Version 7.3 or higher) data sources using the NET8 wrapper. Non-relational
data sources do not support LOBs.

Application savepoint:

In order to protect statement level atomicity for insert, update, or delete
against a nickname, enhancement is made in Federated System to guard
against potential data inconsistency. Application savepoints at the data sources
are incorporated in the global design. If a data source does not support
application savepoints, Federated System is unable to ensure statement level
atomicity at runtime in the event of an error. A new SQL error code,
SQLCODE -20190, is returned to the users when Federated System detects
potential exposure of data inconsistency on any insert, update, or delete
operations against nicknames residing in this data source. To open up insert,
update, delete against nicknames on such data source, user may turn off the
blocking logic via Alter Server command to set server option
’iud_app_svpt_enforce’ to ’N’.

Some data sources, such as Informix, do not support application save points.
If you are accessing data sources that do not support cursor application save

Chapter 12. Working with the federated system 187

points, you need to change your server definitions. Add the
IUD_APP_SVPT_ENFORCE server option and set the option to ’N’. This will
enable you to update the data source using nicknames. Use the ALTER
SERVER statement to add this option to the server definition.

Triggers:

You cannot define a trigger on a nickname.

Related concepts:

v “X/Open distributed transaction processing model” in the Administration
Guide: Planning

v “Federated LOB support” on page 265

Selecting data in a federated system

Use the SELECT statement to select data from data sources.

Restrictions:

To select data using a nickname, the privileges held by the authorization ID of
the statement must include SELECT privilege on the nickname (for the
federated database to accept the request), and SELECT privilege on the
underlying table object (for the data source to accept the request).

Procedure:

Some of the types of distributed requests used with a federated system are
requests that query:
v A single remote data source.
v A local data source and a remote data source.
v Multiple remote data sources.

The federated database is a local data source. Tables and view in the federated
database are local objects. You do not create nicknames for these objects, you
use the actual object name in your SELECT statement. Remote data sources
include: another DB2 for UNIX and Windows database instance on the
federated server, another DB2 for UNIX and Windows database instance on
another server, and data sources other than DB2 for UNIX and Windows. Th
following are examples of SELECT statements. Refer to the DB2 SQL Reference
for the full syntax and functionality of Select statement.

188 DB2 Federated Systems Guide

Suppose that a federated server is configured to access a DB2 for OS/390 data
source, a DB2 for iSeries data source, and an Oracle data source. Stored in
each data source is a table that contains sales information.

These tables include columns that record the customer number (CUST_NO),
the quantity ordered (QUANTITY), and the product number ordered
(PROD_NO). Additionally, you have a local table in the federated database
which contains price information. This table includes columns that record the
product number (PROD_NO) and the current price (PRICE).

The nicknames for the remote data source objects are stored in the SYSCAT
tables.

DB2
federated
database

DB2 for Z/OS

Price Table

DB2 for Z/OS DB2 for iServer

DB2 clients (end user and application)

US Sales
Table

Japan Sales Table

Europe
Sales
Table

Indonesia Sales Table

Sales by
Region ViewEmployees Table

Clients Table

Syscat Table Views

Global Catalog

Oracle

Figure 4. Sample federated system with DB2 and Oracle data sources

Chapter 12. Working with the federated system 189

The following examples show how you can query these data sources.

Querying a single data source:

Z_EU_SALES contains the products ordered by your European customers. It
also includes the quantity ordered at each sale. The query uses a SELECT
statement with an ORDER BY clause to list the sales in Europe sorted by
customer number:
SELECT CUST_NO, PROD_NO, QUANTITY
FROM Z_EU_SALES
ORDER BY CUST_NO

Joining a local data source and a remote data source:

PRICES is a table that resides in the federated database. It contains the price
list for the products you sell. You want to select the prices from this local
table that correspond to the products listed in Z_EU_SALES. You also want to
sort the result set by the customer number.
SELECT sales.CUST_NO, sales.PROD_NO, sales.QUANTITY,
FROM Z_EU_SALES sales, PRICES
WHERE sales.PROD_NO=PRICE.PROD_NO
ORDER BY sales.CUST_NO

Querying multiple remote data sources:

Suppose that you want to gather all the sales information from each region,
and order the result set by product number.
WITH GLOBAL_SALES (Customer, Product, Quantity) AS
(SELECT CUST_NO, PROD_NO, QUANTITY FROM Z_EU_SALES
UNION ALL
SELECT CUST.NO,PROD.NO, QUANTITY FROM iS_US_SALES
UNION ALL

Data source object
name
PRICES

EUROPE_SALES

US_SALES

JAPAN_SALES
SALES_BY_REGION

DB2 federated
database
DB2 for z/OS and
OS/390 database
DB2 for iSeries
database
Oracle database
Oracle database

Type of object Location

Local table

Remote table

Remote table

Remote table
Remote view

TABNAME TYPE

.....

PRICES
FED_PRICES
Z_EU_SALES
iS_US_SALES
ORA_JAPANSALES
ORA_REGIONSALES

T
N
N
N
N
N

Data source information SYSCAT Tables

Figure 5. Tables and nicknames for sample queries

190 DB2 Federated Systems Guide

SELECT CUST.NO,PROD.NO, QUANTITY FROM ORA_JAPANSALES)
SELECT Customer, Product, Quantity
FROM GLOBAL_SALES
ORDER BY Product

Suppose that you have a view at the Oracle data source which lists the sales
for Japan and Indonesia. The nickname for this view is ORA_SALESREGION.
You want to combine this information with the sales from the United States
and display the product prices next to each sale.
SELECT us_jpn_ind.CUST_NO, us_jpn_ind.PROD_NO,
us_jpn_ind.QUANTITY, us_jpn_ind.QUANTITY*PRICES.PRICE
AS SALEPRICE FROM
(SELECT CUST_NO, PROD_NO, QUANTITY
FROM ORA_SALESREGION
UNION ALL
SELECT CUST_NO, PROD_NO, QUANTITY
FROM iS_US_SALES us) us_jpn_ind,PRICES
WHERE us_jpn_ind.PROD_NO = PRICES.PROD_NO
ORDER BY SALEPRICE DESC

Related reference:

v “SELECT statement” in the SQL Reference, Volume 2

Modifying data in a federated system

With a federated system, you can perform INSERT, UPDATE, and DELETE
operations on nicknamed objects. The following sections include examples for
performing these operations.

Inserting data into data source objects

Use the INSERT statement to insert data into data sources.

There are two types of data source objects: local and remote. In a federated
system, local data source objects are object that reside in the federated
database. You do not create nicknames for these objects; you use the actual
object name in your INSERT statement. Remote data source objects are any
objects that do not reside in the federated database, including objects that
reside on the federated server.

Prerequisites:

To insert using a nickname, the privileges held by the authorization ID of the
statement must include INSERT privilege on the nickname (for the federated
database to accept the request), and INSERT privilege on the underlying table
object (for the data source to accept the request).

Restrictions:

Chapter 12. Working with the federated system 191

INSERT is not available through the ODBC wrapper, the DBLIB wrapper, or
the wrappers that are provided from DB2 Life Sciences Data Connect.

Procedure:

Suppose you have an Informix table that has been created as follows:
CREATE TABLE infx_table (c1 INTEGER, c2 VARCHAR(20))

You can use the following SQL to configure the federated server to access this
table:
CREATE WRAPPER informix

CREATE SERVER infx_server TYPE informix
VERSION 9.3 WRAPPER informix
OPTIONS(ADD NODE ’inf93’, ADD DBNAME ’inf_db’,
ADD IUD_APP_SVPT_ENFORCE ’N’)

CREATE USER MAPPING FOR USER SERVER infx_server
OPTIONS(ADD REMOTE_AUTHID ’infx_authid’, ADD REMOTE_PASSWORD ’infx_pswd’)

CREATE NICKNAME infx_table_nn FOR infx_server."infx_authid"."infx_table

You can issue insert, update, and delete statements using the infx_table_nn
nickname. For example:
INSERT INTO infx_table_nn VALUES(1,’Walter’)

Related tasks:

v “Selecting data in a federated system” on page 188
v “Updating data in data source objects” on page 192
v “Deleting data from data source objects” on page 193

Related reference:

v “INSERT statement” in the SQL Reference, Volume 2

Updating data in data source objects

Use the UPDATE statement to change data in data sources.

There are two types of data source objects: local and remote. In a federated
system, local data source objects are object that reside in the federated
database. You do not create nicknames for these objects; you use the actual
object name in your UPDATE statement. Remote data source objects are any
objects that do not reside in the federated database, including objects that
reside on the federated server.

Prerequisites:

192 DB2 Federated Systems Guide

To update from a nickname, the privileges held by the authorization ID of the
statement must include UPDATE privilege on the nickname (for the federated
database to accept the request), and UPDATE privilege on the underlying
table object (for the data source to accept the request).

Restrictions:

UPDATE is not available through the ODBC wrapper, the DBLIB wrapper, or
the wrappers that are provided from DB2 Life Sciences Data Connect.

Procedure:

Suppose you have an Informix table that has been created as follows:
CREATE TABLE infx_table (c1 INTEGER, c2 VARCHAR(20))

You can use the following SQL to configure the federated server to access this
table:
CREATE WRAPPER informix

CREATE SERVER infx_server TYPE informix
VERSION 9.3 WRAPPER informix
OPTIONS(ADD NODE ’inf93’, ADD DBNAME ’inf_db’,
ADD IUD_APP_SVPT_ENFORCE ’N’)

CREATE USER MAPPING FOR USER SERVER infx_server
OPTIONS(ADD REMOTE_AUTHID ’infx_authid’, ADD REMOTE_PASSWORD ’infx_pswd’)

CREATE NICKNAME infx_table_nn FOR infx_server."infx_authid"."infx_table

You can issue insert, update, and delete statements using the infx_table_nn
nickname. For example:
UPDATE infx_table_nn SET c2=’Bill’ WHERE c1=2

Related tasks:

v “Selecting data in a federated system” on page 188
v “Inserting data into data source objects” on page 191
v “Deleting data from data source objects” on page 193

Related reference:

v “UPDATE statement” in the SQL Reference, Volume 2

Deleting data from data source objects

Use the DELETE statement to delete data from data sources.

There are two types of data source objects: local and remote. In a federated
system, local data source objects are object that reside in the federated
database. You do not create nicknames for these objects; you use the actual

Chapter 12. Working with the federated system 193

object name in your UPDATE statement. Remote data source objects are any
objects that do not reside in the federated database, including objects that
reside on the federated server.

Prerequisites:

To delete from a nickname, the privileges held by the authorization ID of the
statement must include DELETE privilege on the nickname (for the federated
database to accept the request), and DELETE privilege on the underlying table
object (for the data source to accept the request).

Restrictions:

DELETE is not available through the ODBC wrapper, the DBLIB wrapper, or
the wrappers that are provided from DB2 Life Sciences Data Connect.

Procedure:

Suppose you have an Informix table that has been created as follows:
CREATE TABLE infx_table (c1 INTEGER, c2 VARCHAR(20))

You can use the following SQL to configure the federated server to access this
table:
CREATE WRAPPER informix

CREATE SERVER infx_server TYPE informix
VERSION 9.3 WRAPPER informix
OPTIONS(ADD NODE ’inf93’, ADD DBNAME ’inf_db’,
ADD IUD_APP_SVPT_ENFORCE ’N’)

CREATE USER MAPPING FOR USER SERVER infx_server
OPTIONS(ADD REMOTE_AUTHID ’infx_authid’, ADD REMOTE_PASSWORD ’infx_pswd’)

CREATE NICKNAME infx_table_nn FOR infx_server."infx_authid"."infx_table

You can issue insert, update, and delete statements using the infx_table_nn
nickname. For example:
DELETE FROM infx_table_nn WHERE c1=3

Related tasks:

v “Selecting data in a federated system” on page 188
v “Inserting data into data source objects” on page 191
v “Updating data in data source objects” on page 192

Related reference:

v “DELETE statement” in the SQL Reference, Volume 2

194 DB2 Federated Systems Guide

Chapter 13. Modifying the federated system

Periodically, you will need to make adjustments to your federated system. For
example, you might need to add a column option to a nickname to improve
performance. You might need to make the federated database aware of a new
index that has been added to a data source object.

This chapter describes how to:
v Modify wrappers
v Modify nicknames
v Modify server definitions
v Create and modify user-defined data type mappings
v Create index specifications for data source objects
v Create and modify user-defined function mappings
v Create and modify remote tables using transparent DDL

Modifying wrappers

Wrappers are mechanisms by which the federated server interacts with data
sources. Typically, you create one wrapper for each type of data source you
want to access.

Once you create the wrapper, you can change or delete it.
v If you did not explicitly set the DB2_FENCED wrapper option to ’N’, you

can alter the wrapper to add this option.
v Suppose that you create the wrong wrapper. You can drop the wrapper and

create a new one.
v When you no longer need access to a data source, you can drop the

wrapper.

Related tasks:

v “Altering a wrapper” on page 196
v “Dropping a wrapper” on page 196

Related reference:

v Appendix B, “Wrapper options for federated systems” on page 285

© Copyright IBM Corp. 1998 - 2002 195

Modifying wrappers-details

Altering a wrapper

If you did not explicitly set the DB2_FENCED wrapper option to ’N’, you can
alter the wrapper to add this option. If you have scripts or applications that
you use for DDL statements, consider adding this option. Even though the
current default setting for DB2_FENCED is ’N’, it is possible that IBM will
change the default setting in the future. When the default changes, any
wrappers created without this option will adhere to the new default. If you
explicitly set the DB2_FENCED wrapper to ’N’, you can ensure that the
behavior of the wrapper will not change when you run the scripts or
applications.

Prerequisites:

You must have SYSADM or DBADM authority to issue the ALTER WRAPPER
statement.

Restrictions:

The only value supported in DB2 for UNIX and Windows Version 8 for the
DB2_FENCED wrapper option is ’N’.

Procedure:

To change a wrapper, use the ALTER WRAPPER statement. Suppose that you
have an Informix wrapper and want to apply the DB2_FENCED option to the
wrapper. The statement you use is:
ALTER WRAPPER INFORMIX OPTIONS (SET DB2_FENCED N’)

Related tasks:

v “Wrappers : Federated Systems help” in the Help: Federated Systems

Related reference:

v “ALTER WRAPPER statement” in the SQL Reference, Volume 2

v Appendix B, “Wrapper options for federated systems” on page 285

Dropping a wrapper

There are several reasons why you might want to drop a wrapper.

Suppose that you create the wrong wrapper. You can drop the wrapper and
create a new one. For example, sometimes a data source has more than one
wrapper that you can use. The one you choose might depend on the version

196 DB2 Federated Systems Guide

of the data source clients software that you are using. Or it might depend on
the operating system you are using on your federated server. Suppose that
you want to access two Oracle tables and one Oracle view. You are using
Oracle Version 8, and the operating system on your federated server is
Windows NT. Originally you create the SQLNET wrapper. Later you learn
that the SQLNET wrapper does not support LOB data types, but that the
NET8 wrapper does support LOBs. The implications of dropping a wrapper
are discussed in that topic.

Another reason to drop a wrapper is that you no longer need access to the
data source that the wrapper is associated with. For example, suppose that
your organization has a requirement to access client information in both
Sybase and Microsoft SQL server databases. You create one wrapper for the
Informix data source and one wrapper for the Microsoft SQL Server data
source. Later your organization decides to migrate all of the information from
Microsoft SQL Server to Informix. You no longer need the Microsoft SQL
Server wrapper and can drop it.

Caution: There are implications when you drop a wrapper, other objects are
impacted:
v All server definitions, user-defined functions mappings, and user-defined

data type mappings that are dependent on the wrapper are dropped.
v All user-defined function mappings, nicknames, user-defined data type

mappings, and user mappings that are dependent on the dropped server
definition are also dropped.

v Any index specifications dependent on the dropped nicknames are
dropped.

v Any federated views dependent on these nicknames are marked
inoperative.

v All applications dependent on the dropped objects and inoperative views
are invalidated.

Prerequisites:

To issue the DROP WRAPPER statement, you must have one of the following
authorizations:
v SYSADM or DBADM authority.
v DROPIN privilege on the schema for the wrapper.
v Definer of the wrapper as recorded in the DEFINER column of the

SYSCAT.WRAPPERS catalog view.

Procedure:

Chapter 13. Modifying the federated system 197

To drop a wrapper, use the DROP statement. For example, to drop the
Microsoft SQL Server MSSQLODBC3 wrapper, the statement you use is:
DROP WRAPPER MSSQLODBC3

Related concepts:

v “Create the wrapper” on page 88

Related reference:

v “DROP statement” in the SQL Reference, Volume 2

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Modifying nicknames

A nickname is an identifier used to reference a data source object. You create a
nickname for each table, view, or other object at the data source that you want
to access.

Once you create the nickname, there are several reasons why you might want
to alter or drop it. For example:
v You can alter the nickname to change the local column names.
v You can alter the nickname to set a data type mapping that applies to only

one specific data source object.
v You can alter the nickname to add a column option that might improve

performance.
v If the underlying data source object structure or content has changed

dramatically, you might decide to drop the nickname and re-create it so that
the metadata about the object is updated in the global catalog.

v You must drop a nickname and re-create it if you want to change the name
of a nickname.

v You can drop the nickname when you no longer need access to the
underlying data source object.

Related tasks:

v “Altering a nickname” on page 199
v “Dropping a nickname” on page 202

Related reference:

v “DROP statement” in the SQL Reference, Volume 2

v “ALTER NICKNAME statement” in the SQL Reference, Volume 2

v Appendix E, “Column options for federated systems” on page 299

198 DB2 Federated Systems Guide

Modifying nicknames-details

Altering a nickname

You change a nickname to modify the federated database’s representation of a
data source object. There are several reason why you might want to alter a
nickname.
v To alter the local column names for a nickname
v To alter the data type mapping for a nickname column
v To alter the nickname column options

Use the ALTER NICKNAME statement to modify a nickname.

Prerequisites:

The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v ALTER privilege on the nickname specified in the statement
v CONTROL privilege on the nickname specified in the statement
v ALTERIN privilege on the schema, if the schema name of the nickname

exists
v Definer of the nickname as recorded in the DEFINER column of the catalog

view for the nickname

Restrictions:

v The ALTER NICKNAME statement cannot be used to register a new data
source index in the federated database. Use the CREATE INDEX statement
with the SPECIFICATION ONLY clause to create a index specification.

v The ALTER NICKNAME statement cannot be used to change the name of
the nickname. To change the name of the nickname, you must drop the
nickname and create the nickname again using the new name.

v If a view has been created on a nickname, the ALTER NICKNAME
statement cannot be used to change the local names or data types for the
columns in the table or view that the nickname references.

v The federated_column_options clause must be specified last if you also
need to specify the LOCAL NAME parameter, the LOCAL TYPE parameter,
or both in the ALTER NICKNAME statement.

v The ALTER TABLE statement cannot be used to modify a nickname.

Altering nickname column names
When you create a nickname, the column names associated with the
underlying data source object are stored locally, in the federated database.

Chapter 13. Modifying the federated system 199

Suppose that you have a nickname Z_EMPLOYEES for a DB2 for z/OS table
that includes a column with the name of EMPNO. To make it clear what data
is stored in that column, you can change the local column name. You can alter
the nickname so that the local column name that users work with is
Employee_Number instead of EMPNO.
ALTER NICKNAME Z_EMPLOYEES ALTER COLUMN EMPNO LOCAL NAME ’Employee_Number’

Altering nickname column data type mappings
Suppose that you have the nickname ORASALES for an Oracle table called
SALES. The table contains a column that is the Oracle DATE data type. The
default type mapping for the Oracle DATE data type is to the DB2
TIMESTAMP data type. However you only want to display the date value
when you retrieve data from this column. You can alter the nickname for the
SALES table to change the mapping to the DB2 DATE data type.
ALTER NICKNAME ORASALES ALTER COLUMN ORDER_DATE LOCAL TYPE DATE

Using the ALTER NICKNAME statement to change a data type mapping, only
sets the mapping for the specific data source object when it is accessed
through that nickname. You can have another nickname for the same object
that uses the default data type mapping.

Note: When the local specification of a column’s data type is changed, the
database manager invalidates any statistics (HIGH2KEY, LOW2KEY, and so
on) gathered for that column.

Altering nickname column options
You specify column information in the CREATE NICKNAME or ALTER
NICKNAME statements using parameters called column options. You can
specify any of these values in either upper- or lowercase. The primary
purpose of column options is to provide information about nickname columns
to the SQL Compiler. Setting column options for one or more columns to ’Y’
allows the SQL Compiler to consider additional pushdown possibilities for
predicates that perform evaluation operations. This assists the SQL Compiler
in reaching global optimization.

You can ADD, SET, or DROP column options in the ALTER NICKNAME
statements

The column options tell the wrapper to handle the data in a column
differently than it normally would handle it. The SQL Complier and query
optimizer use the metadata to develop better plans for accessing the data. DB2
treats the object that a nickname references as if it is a table. As a result, you
can set column options for any data source object that you create a nickname
for. The ALTER NICKNAME statement can be used to add or change column
options for nicknames. There are two column options: NUMERIC_STRING
and VARCHAR_NO_TRAILING_BLANKS.

200 DB2 Federated Systems Guide

NUMERIC_STRING: This column option applies to character type columns
(CHAR and VARCHAR). Suppose that a data source has a collating sequence
that differs from the federated database collating sequence. The federated
server typically would not sort any columns containing character data at the
data source. It would return the data to the federated database and perform
the sort locally. However, suppose that the column is a character data type
and contains only numeric characters (’0’,’1’,...,’9’). You can indicate this by
assigning a value of ’Y’ to the NUMERIC_STRING column option. This gives
the DB2 query optimizer the option of performing the sort at the data source.
If the sort is performed remotely, you can avoid the overhead of porting the
data to the federated server.

Suppose that you have the nickname ORA_INDSALES for an Oracle table
called INDONESIA_SALES. The table contains the column POSTAL_CODE
with the data type of VARCHAR. Originally the column contained only
numeric characters, and the NUMERIC_STRING column option was set to ’Y’.
However, the column now contains a mixture of numeric and non-numeric
character. To change the NUMERIC_STRING column option to ’N’:
ALTER NICKNAME ORA_INDSALES ALTER COLUMN POSTAL_CODE
OPTION (SET NUMERIC_STRING ’N’)

VARCHAR_NO_TRAILING_BLANKS: Unlike the server option with the
same name, the VARCHAR_NO_TRAILING_BLANKS column option can be
used to identity specific columns that contain no trailing blanks. The SQL
Compiler pushdown analysis step will then take this information into account
when checking all operations performed on columns which have this setting.

Suppose that you have the nickname ORA_INDSALES for an Oracle table
called INDONESIA_SALES. The table contains the column NAME with the
data type of VARCHAR. The NAME column does not have trailing blanks. To
add the VARCHAR_NO_TRAILING_BLANKS option to the nickname:
ALTER NICKNAME ORA_INDSALES ALTER COLUMN NAME
OPTION (ADD VARCHAR_NO_TRAILING_BLANKS ’Y’)

Related concepts:

v “Create nicknames for each data source object” on page 96
v “Pushdown analysis” on page 233

Related tasks:

v “Dropping a nickname” on page 202
v “Global optimization” on page 246
v “Nicknames : Federated Systems help” in the Help: Federated Systems

v “Filtering tables and views for creating nicknames : Federated Systems
help” in the Help: Federated Systems

Chapter 13. Modifying the federated system 201

v “Changing options for a single nickname: Federated Systems help” in the
Help: Federated Systems

v “Filtering tables for creating nicknames: Federated Systems help” in the
Help: Federated Systems

v “Changing options for all nicknames : Federated Systems help” in the Help:
Federated Systems

Related reference:

v “DROP statement” in the SQL Reference, Volume 2

v “ALTER NICKNAME statement” in the SQL Reference, Volume 2

v Appendix E, “Column options for federated systems” on page 299

Dropping a nickname

Dropping a nickname deletes the nickname from the global catalog.
Additionally, any objects that are directly or indirectly dependent on that
nickname are either deleted or made inoperative. For example, federated
views are defined using nicknames. If a nickname is used to define a view,
and the nickname is later dropped, the view is made inoperative. Any plans
that are dependent upon that view become invalid.

When a nickname is dropped, the data source object that the nickname
references is not affected.

Use the DROP statement to delete a nickname.

Prerequisites:

The nickname must be listed in the catalog.

The privileges that must be held by the authorization ID of the DROP
statement when dropping nicknames must include one of the following:
v SYSADM or DBADM authority
v DROPIN privilege on the schema for the nickname
v Definer of the nickname as recorded in the DEFINER column of the catalog

view for the nickname
v CONTROL privilege on the nickname

Procedure:

There are several reasons why you might need to drop a nickname:

202 DB2 Federated Systems Guide

v If the underlying data source object structure or content has changed
dramatically, you might decide to drop the nickname. You can then
re-create the nickname so that the metadata about the object is updated in
the global catalog.

v If you want to change the name of a nickname, you must drop a nickname
and re-create the nickname using the new name.

v If you no longer need access to the underlying data source object, you can
drop the nickname.

To drop a nickname, the syntax is:
DROP NICKNAME nickname

where nickname identifies the nickname to be dropped.

The nickname is deleted from the federated database. Additionally:
v All information about the columns and indexes associated with the

nickname is deleted from the global catalog.
v Any index specifications that are dependent on the nickname are dropped.
v Any views dependent on the nickname are marked inoperative.
v Any packages depending on the dropped index specifications or

inoperative views are invalidated.
v

Related concepts:

v “Create nicknames for each data source object” on page 96

Related tasks:

v “Altering a nickname” on page 199

Related reference:

v “DROP statement” in the SQL Reference, Volume 2

Modifying server definitions

A server definition is a set of metadata that the federated server uses to
connect to a data source.

Use the ALTER SERVER statement to modify a server definition. Some of the
information within a server definition is stored as server options. When you
modify a server definition, it is important to understand the options that you
can specify about the server. Some server options configure the wrapper and
some affect the way DB2 uses the wrapper. Server options are specified as
parameters in the CREATE SERVER and ALTER SERVER statements.

Chapter 13. Modifying the federated system 203

Use the DROP statement to delete a server definition.

Related tasks:

v “Altering server definitions” on page 204
v “Dropping a server definition” on page 207

Related reference:

v Appendix C, “Server options for federated systems” on page 287

Modifying server definitions-details

Altering server definitions

You change an existing server definition in the federated database catalog to:
v Modify the definition of a specific data source.
v Modify the definition of a specific type or version of data source.
v Make changes in the configuration through server options.

You can alter a server definition using the DB2 Control Center or through the
DB2 Command Line Processor.

To alter a server definition using the DB2 Control Center, open the Alter
Server Options window.

To alter a server definition from the DB2 Command Line Prompt, use the
ALTER SERVER statement.

Note: In the ALTER SERVER statement, the word SERVER and the parameter
names that start with server- refer only to data sources in a federated system.
They do not refer to the federated server in such a system, or to DRDA
application servers.

Prerequisites:

The authorization ID of the statement must include either SYSADM or
DBADM authority on the federated database.

Restrictions:

You cannot use the ALTER SERVER statement to:
v Modify the DBNAME or NODE server options.
v Change the wrapper that is associated with a server mapping. For example

to change from DBLIB to CTLIB.

204 DB2 Federated Systems Guide

Modifying the definition of a specific data source
Suppose that you have a server definition for a Microsoft SQL Server Version
6.5 data source. The name you assigned the server in the CREATE SERVER
statement is SQLSVR_ASIA. If the Microsoft SQL Server server is upgraded to
Version 7.0, the statement to alter the server definition is:
ALTER SERVER SQLSVR_ASIA VERSION 7

Suppose that you have a server definition for a Sybase data source that uses
the DBLIB wrapper. The name you assigned the server in the CREATE
SERVER statement is SYBSERVER. To take advantage of the more powerful
capabilities of the CTLIB wrapper, you decide to upgrade the server. To do
this, you must first create the wrapper, using the CREATE WRAPPER
statement. Then you can change the wrapper used in the server definition.
The statements to create the wrapper and alter the server definition are:
CREATE WRAPPER CTLIB OPTIONS
ALTER SERVER SYBSERVER WRAPPER CTLIB

Modifying the definition of a specific type or version of data source
Suppose that you have five Informix servers that you created server
definitions for. If they have all been upgraded from Informix Version 7 to
Version 9, you can modify all five definitions at the same time.
ALTER SERVER TYPE informix VERSION 9

Suppose that you have a server definition for an Oracle Version 7 data source
that uses the SQLNET wrapper. The name assigned to the server in the
CREATE SERVER statement is ORASERVER. This server has been upgraded
to Oracle Version 9 and will use the NET8 wrapper. To change the version
and wrapper in the server definition, the statement is:
ALTER SERVER ORASERVER VERSION 9 WRAPPER NET8

Changing the server configuration through server options
Server options are set to values that persist over successive connections to the
data source. These values are stored in the global catalog. There are general
server options and data type–specific server options. Examples of server
options include:
v If you defined an Informix server using the server name of INFMX01 and

you now want to change the CPU_RATIO option to 5.0, the statement to
alter the server definition is:
ALTER SERVER INFMX01 OPTIONS (SET CPU_RATIO ’5.0’)

v If you defined an Oracle server using the server name of ORCL99 and you
now want to add the FOLD_ID and FOLD_PW options, the statement to
alter the server definition is:
ALTER SERVER ORCL99 OPTIONS (ADD FOLD_ID’U’, FOLD_PW ’U’)

Chapter 13. Modifying the federated system 205

v If you want to set the timeout value to the number of seconds the DBLIB
wrapper should wait for a response from the Sybase server, use the
TIMEOUT server option. The statement to alter the server definition is:
ALTER SERVER SYBSERVER OPTIONS (ADD TIMEOUT ’60’)

Server option overrides: Suppose a server option is set to one value for a
type of data source, for example the PLAN_HINTS server option is set to ’Y’
for server type ORACLE. However, the PLAN_HINTS server option is set to
’N’ for a specific data source named PURNELL. The setting for the specific
data source overrides the setting for the server type. This configuration causes
PLAN_HINTS to be enabled at all Oracle data sources except PURNELL.

Modifying the DBNAME and NODE server options: The name for the data
source on the RDBMS is set in the NODE server option. Some data sources
have multiple databases on each instance. For these data source, the name of
the database which the federated server connects to is set in the DBNAME
server option. These options are set when you initially create the server
definition in the CREATE SERVER statement.

To modify the DBNAME or NODE server options, you must drop the server
definition and re-create it. Alternatively you can create a new one server
definition, using a different name, while keeping the original server definition
active to ensure the new definition has the same values as the original
definition. You would then drop the original server definition.

Changing server options temporarily: To set a server option value
temporarily, use the SET SERVER OPTION statement. This statement
overrides the value for the duration of a single connection to the federated
database. The overriding value does not get stored in the global catalog.

Related concepts:

v “Server characteristics affecting pushdown opportunities” on page 235
v “Server characteristics affecting global optimization” on page 247

Related tasks:

v “Modifying server definitions” on page 203
v “Dropping a server definition” on page 207
v “Servers : Federated Systems help” in the Help: Federated Systems

v “Selecting server options: Federated Systems help” in the Help: Federated
Systems

v “Adding a new server option: Federated Systems help” in the Help:
Federated Systems

v “Viewing server options: Federated Systems help” in the Help: Federated
Systems

206 DB2 Federated Systems Guide

v “Adding a server option: Federated Systems help” in the Help: Federated
Systems

v “Altering the values for server options: Federated Systems help” in the
Help: Federated Systems

v “Dropping server options: Federated Systems help” in the Help: Federated
Systems

Related reference:

v “ALTER SERVER statement” in the SQL Reference, Volume 2

v “SET SERVER OPTION statement” in the SQL Reference, Volume 2

v Appendix C, “Server options for federated systems” on page 287

Dropping a server definition

Dropping a server definition deletes the definition from the global catalog.
Additionally, any objects that are directly or indirectly dependent on that
server definition are either deleted or made inoperative.

When a server definition is dropped, the data source object that the server
definition references is not affected.

Use the DROP statement to delete a server definition.

Prerequisites:

You must have SYSADM or DBADM authority to drop a server definition.

Procedure:

When you no longer need to access a data source server, drop the server
definition from the federated database. You can drop a server definition using
the DB2 Control Center or using DROP statement from the DB2 command
line processor.

To drop a server definition, the syntax is:
DROP SERVER servername

where servername identifies the server definition to be dropped.

If you defined an Informix server that uses the server name of INFMX01, the
statement to drop the server definition is:
DROP SERVER INFMX01

The server definition is deleted from the federated database. Additionally:

Chapter 13. Modifying the federated system 207

v All nicknames for data source objects (such as tables and views) residing at
the data source are dropped.

v Any index specifications dependent on these nicknames are dropped.
v Any user-defined function mappings, user-defined type mappings, and user

mappings that are dependent on the dropped server definition are dropped.
v All packages dependent on the dropped server definition, function

mappings, nicknames, and index specifications are invalidated.

Related concepts:

v “Supply the server definition” on page 91

Related tasks:

v “Modifying server definitions” on page 203
v “Altering server definitions” on page 204

Related reference:

v “DROP statement” in the SQL Reference, Volume 2

Modifying default data type mappings

When you create a nickname for a data source table, the federated server
populates the global catalog with information about the table. This
information includes the nickname, the data source table name, the column
names and the data types that are defined for each table column.

Data source data types are referred to as remote data types, and federated
database data types are referred to aslocal data types.

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type. The other type of mapping is a reverse type mapping,
which are used with transparent DDL. In a reverse type mapping, the
mapping is from a local type to a comparable remote type.

DB2 uses data type mappings to determine what DB2-supported data type
should be defined for the column of a data source object. Default data type
mappings are built into the data source wrappers.

However, your applications might require data type mappings that are
different than the default mappings. You can override the default mappings
to:

208 DB2 Federated Systems Guide

v Change a type mapping for all data source objects located on a specific
server

v Change a type mapping for a specific data source object
v Change a type mapping for a specific data source type
v Change a type mapping for a specific data source type and version

Use the CREATE TYPE MAPPING statement to define new data type
mappings. Mappings you create are stored in the federated database global
catalog SYSSTAT.TYPEMAPPING view.

Change a data type mapping before you create nicknames for the data source
objects. When you create a nickname for a data source object, the federated
server populates the global catalog with the column names and the data types
of those columns. Only nicknames created after a mapping is changed, reflect
the new type mapping. Nicknames created before the mapping is changed
relfect the default data type mapping. To update existing nicknames, you will
have to either alter each nickname to reflect the new mapping, or drop and
re-create the nickname.

Forward type mapping:

A forward type mapping is the mapping from a local DB2 type to a a remote
(data source) data type. Forward type mappings are used when a query you
submit to the federated database includes a nicknames for that data source.

The syntax for the CREATE TYPE MAPPING statement has been updated in
DB2 for UNIX and Windows, Version 8. There are two acceptable formats for
creating a forward type mapping.
CREATE TYPE MAPPING type_mapping_name FROM LOCAL TYPE local_data_type
TO remote_server REMOTE TYPE data_source_data_type

CREATE TYPE MAPPING type_mapping_name TO remote_server
REMOTE TYPE data_source_data_type FROM LOCAL TYPE local_data_type

Both a TO and a FROM keyword must be present in the CREATE TYPE
MAPPING statement. If the type has a short and long form (for example,
CHAR and CHARACTER), the short form should be specified.

Reverse type mapping:

A reverse type mapping is only used with transparent DDL. As part of
transparent DDL, you want to establish as mapping from a data source data
type to a DB2 type. Reverse type mappings are only used when you create a
remote table and a nickname for that remote table using transparent DDL.

Chapter 13. Modifying the federated system 209

The syntax for the CREATE TYPE MAPPING statement has been updated in
DB2 for UNIX and Windows, Version 8. There are two acceptable formats for
creating a forward type mapping.
CREATE TYPE MAPPING type_mapping_name FROM remote_server
REMOTE TYPE data_source_data_type TO LOCAL TYPE local_data_type

CREATE TYPE MAPPING type_mapping_name TO LOCAL TYPE local_data_type
FROM remote_server REMOTE TYPE data_source_data_type

Both a TO and a FROM keyword must be present in the CREATE TYPE
MAPPING statement. If the type has a short and long form (for example,
CHAR and CHARACTER), the short form should be specified

Unsupported data types:

Federated servers to not support mappings for all DB2 data types. The
local_data_type cannot be:
v LONG VARCHAR
v LONG VARGRAPHIC
v DATALINK
v a user-defined data type

The data_source_data-type cannot be a user-defined type.

However, there are alternatives you can use:
v User-defined types. You cannot create a user-defined type mapping for

these data types. However, you create a nickname for view at the data
source that is identical to the table that contains the user-defined data
types. The view must ’cast’ the user-defined type column to the built-in, or
system, type. The drawback with this alternative, is that views have no
statistics or indexes.

v LONG VARCHAR. A nickname can be created for a remote table that
contains LONG VARCHAR columns. However, the results will be mapped
to a local DB2 data type that is not LONG VARCHAR.

Related concepts:

v “Define alternative data type mappings to the federated database” on page
101

v “Data type mappings” on page 18

Related tasks:

v “Change a type mapping for all data source objects located on a specific
server” on page 211

v “Change a type mapping for a specific data source object” on page 212

210 DB2 Federated Systems Guide

v “Change a type mapping for a specific data source type” on page 214
v “Change a type mapping for a specific data source type and version” on

page 215

Related reference:

v Appendix H, “Default forward data type mappings” on page 307
v Appendix I, “Default reverse data type mappings” on page 323

Modifying default data type mappings-details

Change a type mapping for all data source objects located on a specific
server

You can specific a type mapping for all objects located on a specific server.

Prerequisites:

The privileges held by the authorization ID of the statement must have
SYSADM or DBADM authority.

Restrictions:

The local_data_type cannot be LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, or a user-defined data type. The data_source_data-type cannot be a
user-defined type.

Procedure:

Suppose you want to access three Oracle tables located on the same server.
You have defined this server to the federate database as ORA2SERVER in a
server definition. Each table contains a column with a data type of DATE,
which records time stamp information. The Oracle DATE data type is mapped
by default to the local DB2 data type TIMESTAMP. However, when you query
these columns you only want the result set to display time information. You
can create a type mapping which overrides the default mapping for any object
located on this Oracle server.

If you create nicknames for the three tables without changing the default type
mapping, TIMESTAMP would be defined locally for these columns. Federated
queries which included these columns would display time stamps in the
result set.

Instead, create a data type mapping for ORA2SERVER before you create the
nicknames for these tables. The DB2 TIME data type, instead of the DB2
TIMESTAMP data type, is defined locally for the Oracle columns. If new

Chapter 13. Modifying the federated system 211

tables which contain DATE columns are added to this Oracle server,
nicknames created for those tables will also map the Oracle DATE data type
to the DB2 TIME data type.

If you create the nicknames before you create the type mapping, you have use
the ALTER NICKNAME statement to change the type mapping. You will have
to modify each nickname separately to change the data type mapping.

To map the Oracle DATE data type to the DB2 TIME data type for the
ORA2SERVER, the syntax is:
CREATE TYPE MAPPING ORA2_DATE FROM LOCAL TYPE TIME
TO SERVER ORA2SERVER REMOTE TYPE DATE

Related concepts:

v “Define alternative data type mappings to the federated database” on page
101

Related tasks:

v “Altering a nickname” on page 199
v “Change a type mapping for a specific data source object” on page 212
v “Change a type mapping for a specific data source type” on page 214
v “Change a type mapping for a specific data source type and version” on

page 215

Related reference:

v “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2

v Appendix H, “Default forward data type mappings” on page 307

Change a type mapping for a specific data source object

To change the data type mapping for a column of a specific data source
object, use the ALTER NICKNAME statement instead of the CREATE TYPE
MAPPING statement.

Prerequisites:

The privileges held by the authorization ID of the statement must have
SYSADM or DBADM authority.

Restrictions:

The local_data_type cannot be LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, or a user-defined data type. The data_source_data-type cannot be a
user-defined type.

212 DB2 Federated Systems Guide

Procedure:

You can change the local type in a data type mapping for a specific table. For
example, Oracle data type NUMBER(32,3) maps by default to the DB2 data
type DOUBLE, a floating decimal data type. Suppose that in an Oracle table
for employee information, a column BONUS was defined with a data type of
NUMBER(32,3). Because of the mapping, a query which includes the BONUS
column could return values that look like this:
5.0000000000000E+002
1.0000000000000E+003

where +002 signifies that the decimal point should be moved two places to
the right, and +003 signifies that the decimal point should be moved three
places to the right.

To have queries which include the BONUS column return values that look
like dollar amounts, you could define a different mapping for this particular
table. Change the default mapping for the Oracle NUMBER(32,3) type from
the DB2 DOUBLE to the DB2 DECIMAL type. Use a precision and scale that
reflect the format of actual bonuses. For example, if you knew that the dollar
portion of the bonuses would not exceed six figures, you could map
NUMBER(32,3) to DECIMAL(8,2). Under the constraint of this new mapping,
a query including the BONUS column would return values like this:
500.00
1000.00

The ALTER NICKNAME statement would be:
ALTER NICKNAME ORASALES ALTER COLUMN BONUS LOCAL TYPE DECIMAL(8,2)

Related concepts:

v “Define alternative data type mappings to the federated database” on page
101

v “Data type mappings” on page 18

Related tasks:

v “Altering a nickname” on page 199
v “Modifying default data type mappings” on page 208
v “Change a type mapping for all data source objects located on a specific

server” on page 211
v “Change a type mapping for a specific data source type” on page 214
v “Change a type mapping for a specific data source type and version” on

page 215

Related reference:

Chapter 13. Modifying the federated system 213

v “ALTER NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2

v Appendix H, “Default forward data type mappings” on page 307

Change a type mapping for a specific data source type

You can specific a type mapping for all objects of a specific data source type.
For example you can create a data type mapping for all Oracle data source
objects, regardless of which Oracle server the object are located on.

Prerequisites:

The privileges held by the authorization ID of the statement must have
SYSADM or DBADM authority.

Restrictions:

The local_data_type cannot be LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, or a user-defined data type. The data_source_data-type cannot be a
user-defined type.

Procedure:

For example, Oracle data type NUMBER (23,3) maps by default to the DB2
data type DOUBLE, a floating decimal data type. Suppose that for Oracle
tables and views you want any column that uses the Oracle data type
NUMBER (23,2) to map to DB2 DECIMAL (8,2). The CREATE TYPE
MAPPING statement would be:
CREATE TYPE MAPPING ORA_DEC FROM LOCAL TYPE SYSIBM.DECIMAL(8,2)
TO SERVER TYPE ORACLE REMOTE TYPE NUMBER (23,3)

Related concepts:

v “Define alternative data type mappings to the federated database” on page
101

v “Data type mappings” on page 18

Related tasks:

v “Change a type mapping for all data source objects located on a specific
server” on page 211

v “Change a type mapping for a specific data source object” on page 212
v “Change a type mapping for a specific data source type and version” on

page 215

Related reference:

214 DB2 Federated Systems Guide

v “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2

v Appendix H, “Default forward data type mappings” on page 307

Change a type mapping for a specific data source type and version

You can specific a type mapping for all objects of a specific data source type.
For example you can create a data type mapping for all Oracle data source
objects which use a Oracle Version 8 server.

Prerequisites:

The privileges held by the authorization ID of the statement must have
SYSADM or DBADM authority.

Restrictions:

The local_data_type cannot be LONG VARCHAR, LONG VARGRAPHIC,
DATALINK, or a user-defined data type. The data_source_data-type cannot be a
user-defined type.

Procedure:

For example, Oracle data type NUMBER (23,3) maps by default to the DB2
data type DOUBLE, a floating decimal data type. Suppose that for Oracle
tables and views you want any column that uses the Oracle data type
NUMBER (23,2) to map to DB2 DECIMAL (8,2). The CREATE TYPE
MAPPING statement would be:
CREATE TYPE MAPPING ORA_DEC FROM LOCAL TYPE SYSIBM.DECIMAL(8,2)
TO SERVER TYPE ORACLE VERSION 8 REMOTE TYPE NUMBER (23,3)

Related tasks:

v “Modifying default data type mappings” on page 208
v “Change a type mapping for all data source objects located on a specific

server” on page 211
v “Change a type mapping for a specific data source object” on page 212
v “Change a type mapping for a specific data source type” on page 214

Related reference:

v “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2

Chapter 13. Modifying the federated system 215

Creating index specifications for data source objects

When a nickname is created for a data source table, the federated server
supplies the global catalog with information about any indexes that the data
source table has. The optimizer uses this information to expedite the
processing of distributed requests. This information is a set of metadata and
called an index specification.

The federated server does not create an index specification if:
v A nickname is created for a table that has no index.
v A nickname is created for a data source object that does not contain indexes

such as a view, Informix synonym, table-structured file, Documentum
Docbase file, Excel spreadsheet, BLAST algorithm, or XML tagged file.

v The remote index is on a column of more than 255 bytes, or contains a total
key length in excess of 1024 bytes.

v The remote index is on a LOB column.

In these circumstances the federated server does not store index specifications
for the data source objects. However, you can supply the necessary index
information to the global catalog using the CREATE INDEX statement.

Prerequisites:

The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v One of: CONTROL privilege on the object or INDEX privilege on the object.

And one of: IMPLICIT_SCHEMA authority on the database, if the implicit
or explicit schema name of the index does not exist, or CREATEIN privilege
on the schema, if the schema name of the index refers to an existing
schema.

Restrictions:

There are some restrictions when creating an index specification on a
nickname.
v If the bind option DYNAMICRULES BIND applies, the statement cannot be

dynamically prepared. Also, you cannot use the INCLUDE, CLUSTER,
PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS, and ALLOW
REVERSE SCANS parameters in the CREATE INDEX statement.

v UNIQUE should be specified only if the data for the index key contains
unique values for every row of the data source table. The uniqueness will
not be checked.

216 DB2 Federated Systems Guide

v The sum of the stored lengths of the specified columns must not be greater
than 1024.

v No LOB column, DATALINK column, or distinct type column based on a
LOB or DATALINK may be used as part of an index. This restriction is
enforced even if the length attribute of the column is small enough to fit
within the 1024-byte limit.

CREATE INDEX syntax:

The CREATE INDEX statement can be embedded in an application program
or issued through dynamic SQL statements from the Control Center or the
command line.

When used with nicknames, the CREATE INDEX statement creates an index
specification in the federated global catalog; it does not create an index on the
data source table.

Use this syntax to create an index specification:
CREATE INDEX index_name ON nickname
(column_name) SPECIFICATION ONLY

CREATE UNIQUE INDEX index_name ON nickname
(column_name DESC) SPECIFICATION ONLY

For an index specification, column_name is the name by which the federated
server references a column of a data source table.

Related concepts:

v “Index specifications” on page 22

Related tasks:

v “Creating index specifications on tables that acquire new indexes” on page
218

v “Creating index specifications on views” on page 219
v “Creating index specifications on Informix synonyms” on page 221
v “Nickname characteristics affecting global optimization” on page 249
v “Creating an index: Control Center help” in the Help: Control Center

Related reference:

v “CREATE INDEX statement” in the SQL Reference, Volume 2

Chapter 13. Modifying the federated system 217

Creating index specifications for data source objects-details

Creating index specifications on tables that acquire new indexes

There are several situations in which a table acquires a new index:
v You create a nickname for a table that does not have an index, but acquires

an index later.
v You create a nickname for a table that has an index, but acquires another

index later.

In these situations, you should create an index specification for the table so
that the SQL Complier can use this information when processing queries that
reference the table.

Prerequisites:

The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v One of: CONTROL privilege on the object or INDEX privilege on the object.

And one of: IMPLICIT_SCHEMA authority on the database, if the implicit
or explicit schema name of the index does not exist, or CREATEIN privilege
on the schema, if the schema name of the index refers to an existing
schema.

Restrictions:

There are some restrictions when creating an index on a nickname.
v If the bind option DYNAMICRULES BIND applies, the statement cannot be

dynamically prepared. Also, you cannot use the INCLUDE, CLUSTER,
PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS, and ALLOW
REVERSE SCANS parameters in the CREATE INDEX statement.

v UNIQUE should be specified only if the data for the index key contains
unique values for every row of the data source table. The uniqueness will
not be checked.

v The sum of the stored lengths of the specified columns must not be greater
than 1024.

v No LOB column, DATALINK column, or distinct type column based on a
LOB or DATALINK may be used as part of an index. This restriction is
enforced even if the length attribute of the column is small enough to fit
within the 1024-byte limit.

A table that has no index, later acquires an index:

218 DB2 Federated Systems Guide

Suppose that you create the nickname employee a data source table called
CURRENT_EMP, which has no indexes. Sometime after this nickname is
created, an index was defined on CURRENT_EMP using the WORKDEPT and
JOB columns for the index key. Provide the new index information to the
global catalog. The CREATE INDEX statement you create will reference the
nickname for the table and contain information about the index of the data
source table.

To create an index specification that describes this index, the syntax would be:
CREATE UNIQUE INDEX job_by_dept ON employee
(WORKDEPT, JOB) SPECIFICATION ONLY

where job_by_dept is the index name.

A table acquires a new index:

Suppose that you create the nickname jp_sales for a table called
JAPAN_SALES. A new index is later added to the table in addition to the ones
it had when the nickname was created. The new index uses the MARKUP
column for the index key. Provide the new index information to the global
catalog. The CREATE INDEX statement you create will reference the
nickname for the table and contain information about the index of the data
source table.

To create an index specification that describes this index, the syntax would be:
CREATE UNIQUE INDEX jp_markup ON jp_sales (MARKUP) SPECIFICATION ONLY

where jp_markup is the index name.

Related concepts:

v “Index specifications” on page 22

Related tasks:

v “Creating index specifications for data source objects” on page 216
v “Creating index specifications on views” on page 219
v “Creating index specifications on Informix synonyms” on page 221
v “Nickname characteristics affecting global optimization” on page 249

Related reference:

v “CREATE INDEX statement” in the SQL Reference, Volume 2

Creating index specifications on views

When a nickname is created for a view, the federated server is unaware of the
underlying table (and its indexes) from which the view was generated. Create

Chapter 13. Modifying the federated system 219

an index specification for the view so that the SQL Complier can use this
information when processing queries that reference the view.

Prerequisites:

The privileges held by the authorization ID of the statement must include at
least one of the following:
v SYSADM or DBADM authority
v One of: CONTROL privilege on the object or INDEX privilege on the object.

And one of: IMPLICIT_SCHEMA authority on the database, if the implicit
or explicit schema name of the index does not exist, or CREATEIN privilege
on the schema, if the schema name of the index refers to an existing
schema.

Restrictions:

There are some restrictions when creating an index on a nickname.
v If the bind option DYNAMICRULES BIND applies, the statement cannot be

dynamically prepared. Also, you cannot use the INCLUDE, CLUSTER,
PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS, and ALLOW
REVERSE SCANS parameters in the CREATE INDEX statement.

v UNIQUE should be specified only if the data for the index key contains
unique values for every row of the data source table. The uniqueness will
not be checked.

v The sum of the stored lengths of the specified columns must not be greater
than 1024.

v No LOB column, DATALINK column, or distinct type column based on a
LOB or DATALINK may be used as part of an index. This restriction is
enforced even if the length attribute of the column is small enough to fit
within the 1024-byte limit.

A nickname is created on a view:

Suppose that you create the nickname jp_sales2002 for a view called
JAPAN_SALES2002. The underlying table for this view is the JAPAN_SALES
table which contains several indexes: REGION, AMOUNT, SALES_REP. The
CREATE INDEX statement you create will reference the nickname for the
view and contain information about the index of the underlying table for the
view.

When creating an index specification for a view, make certain the column or
columns that the table index is based on is part of the view. If you want to
create index specifications for all indexes on the underlying table, each index

220 DB2 Federated Systems Guide

specification will have to be created separately. For example, to create an
index specification that describes the REGION index, the syntax would be:
CREATE UNIQUE INDEX jp_2002_region ON jp_sales2002
(REGION) SPECIFICATION ONLY

where jp_2002_region is the index name, and jp_sales2002 is the nickname for
the view JAPAN_SALES2002.

Related concepts:

v “Index specifications” on page 22

Related tasks:

v “Creating index specifications for data source objects” on page 216
v “Creating index specifications on tables that acquire new indexes” on page

218
v “Creating index specifications on Informix synonyms” on page 221
v “Nickname characteristics affecting global optimization” on page 249

Related reference:

v “CREATE INDEX statement” in the SQL Reference, Volume 2

Creating index specifications on Informix synonyms

In Informix, you can create a synonym for a table or view. While the DB2
federated server allows you to create nicknames for Informix synonyms, the
action that the federated server takes depends on whether the synonym is
based on a table or a view:
v Suppose that a nickname is created for a synonym, and the synonym is

based on an Informix table. If the federated server determines that the table
the synonym refers to has an index, then an index specification is created
for the synonym. If the table that the synonym refers to does not have an
index, then no index specification is created for the synonym. However you
can create an index specification manually, using the CREATE INDEX
statement.

v Suppose the a nickname is created for a synonym, and the synonym is
based on an Informix view. The federated server can not determine which
underlying table or tables the view is based on. Therefore no index
specification is created for the synonym. However you can create an index
specification manually using the CREATE INDEX statement.

Prerequisites:

The privileges held by the authorization ID of the statement must include at
least one of the following:

Chapter 13. Modifying the federated system 221

v SYSADM or DBADM authority
v One of: CONTROL privilege on the object or INDEX privilege on the object.

And one of: IMPLICIT_SCHEMA authority on the database, if the implicit
or explicit schema name of the index does not exist, or CREATEIN privilege
on the schema, if the schema name of the index refers to an existing
schema.

Restrictions:

There are some restrictions when creating an index on a nickname.
v If the bind option DYNAMICRULES BIND applies, the statement cannot be

dynamically prepared. Also, you cannot use the INCLUDE, CLUSTER,
PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS, and ALLOW
REVERSE SCANS parameters in the CREATE INDEX statement.

v UNIQUE should be specified only if the data for the index key contains
unique values for every row of the data source table. The uniqueness will
not be checked.

v The sum of the stored lengths of the specified columns must not be greater
than 1024.

v No LOB column, DATALINK column, or distinct type column based on a
LOB or DATALINK may be used as part of an index. This restriction is
enforced even if the length attribute of the column is small enough to fit
within the 1024-byte limit.

A nickname is created on an Informix synonym that is based on a table:

When the synonym is based on an Informix table that does not contain an
index, you can create an index specification for the synonym to tell the
optimizer which column or columns to search on to find data quickly. The
statement you create will specify the nickname for the synonym, and you will
supply information about the column or columns in the table that the
synonym is based on. Suppose that you create the nickname contracts for a
synonym called SALES_CONTRACTS and the table that this synonym is
based on is called table which contains several indexes: REGION, AMOUNT,
SALES_REP. The CREATE INDEX statement you create will reference the
nickname for the view and contain information about the index of the
underlying table for the view.

A nickname is created on an Informix synonym that is based on a view:

Suppose that you create the nickname jp_sales2002 for a view called
JAPAN_SALES2002. The underlying table for this view is the JAPAN_SALES
table which contains several indexes: REGION, AMOUNT, SALES_REP. The

222 DB2 Federated Systems Guide

CREATE INDEX statement you create will reference the nickname for the
view and contain information about the index of the underlying table for the
view.

When creating an index specification for a view, make certain that the column
or columns the table index is based on, is part of the view. If you want to
create index specifications for all indexes on the underlying table, each index
specification will have to be created separately.

To create an index specification that describes REGION index, the syntax
would be: CREATE UNIQUE INDEX jp_2002_region ON jp_sales2002 (REGION)
SPECIFICATION ONLY where jp_2002_region is the index name and jp_sales2002
is the nickname for the view JAPAN_SALES2002.

Related concepts:

v “Index specifications” on page 22

Related tasks:

v “Creating index specifications for data source objects” on page 216
v “Creating index specifications on tables that acquire new indexes” on page

218
v “Creating index specifications on views” on page 219
v “Nickname characteristics affecting global optimization” on page 249

Related reference:

v “CREATE INDEX statement” in the SQL Reference, Volume 2

Creating and modifying function mappings

Create a mapping between a federated database function or function template,
and a data source function. The mapping can associate the federated database
function or template with a function at either a specified data source or a
range of data sources. For example, you can create a function mapping for all
data sources of a particular type and version. When you create a function
mapping, it disables the default mapping between a federated database
function and a data source function

You can override the default mappings to:
v Change a function mapping for all data source objects located on a specific

server
v Change a function mapping for a specific data source type
v Provide function mapping statistical information to the optimizer
v Disable default function mappings

Chapter 13. Modifying the federated system 223

Use the CREATE FUNCTION MAPPING statement to create a function or
function template.

Prerequisites:

The authorization ID of the statement must have SYSADM or DBADM
authority.

Restrictions:

v For a function or function template that has any input parameters, the
data_type specifies the data type of such a parameter. The data type cannot
be LONG VARCHAR, LONG VARGRAPHIC, DATALINK, a large object
(LOB) type, or a user-defined type.

v If the data source function has input parameters:
– The DB2 counterpart function must have the same number of input

parameters that the data source function has.
– The data types of the input parameters for the DB2 counterpart function

must be compatible with the corresponding data types of the input
parameters for data source function.

v If the data source function has no input parameters:
– The DB2 counterpart function cannot have any input parameters.

For the federated server to recognize a data source function, the function must
be mapped against an existing DB2 function. DB2 supplies default mappings
between existing built-in data source functions and built-in DB2 functions. For
most data sources, the default function mappings are in the wrappers. The
default function mappings from DB2 for UNIX and Windows functions to
DB2 for z/OS functions are in the DRDA wrapper. The default function
mappings from DB2 for UNIX and Windows functions to Sybase functions are
in the CTLIB and DBLIB wrappers, and so forth.

For some non-relational data sources, the wrappers do not contain the default
function mappings. The DB2 for UNIX and Windows data types must be
specified for each column of the data source object when the nickname is
created. Each column must be mapped to a particular field or column in the
data source object.

To use a data source function that the federated server does not recognize,
you must create a function mapping. The mapping you create is between the
data source function and a counterpart function at the federated database.
Function mappings are typically used when a new built-in function or a new
user-defined function becomes available at the data source. If a DB2
counterpart function does not exist, you must create one on the DB2 federated
server. :

224 DB2 Federated Systems Guide

The DB2 counterpart function can be either a complete function or a function
template.

A function template is a DB2 function that you create to invoke a function on a
data source. The federated server recognizes a data source function when
there is a mapping between the data source function and a counterpart
function at the federated database. You can create a function template to act as
the counterpart when no counterpart exists.

However, unlike a regular function, a function template has no executable
code. After you create a function template, you must then create the function
mapping between the template and the data source function. You create a
function template with the CREATE FUNCTION statement, using the AS
TEMPLATE parameter. You create a function mapping by using the CREATE
FUNCTION MAPPING statement. When the federated server receives queries
which specify the function template, the federated server will invoke the data
source function.

Note: When you create a function mapping, it is possible that the return
values from a function evaluated at the data source will be different than the
return values from a compatible function evaluated at the DB2 federated
database. DB2 will use the function mapping, but this might result in a SQL
syntax error or unexpected results.

Change a function mapping for all data source objects located on a specific
server:

Suppose that you want to map a function template called BONUS to a UDF,
also called BONUS, that is used at an Oracle data source called ORACLE1.
CREATE FUNCTION MAPPING MY_ORACLE_FUN2 FOR BONUS()
SERVER ORACLE1 OPTIONS (REMOTE_NAME ’BONUS’)

Change a function mapping for a specific data source type:

Suppose that you want to map a function template to a UDF that all Oracle
data sources can access. The template is called STATS and belongs to a
schema called NOVA. The Oracle UDF is called STATISTICS and belongs to a
schema called STAR.
CREATE FUNCTION MAPPING MY_ORACLE_FUN1 FOR NOVA.STATS (DOUBLE, DOUBLE)
SERVER TYPE ORACLE OPTIONS (REMOTE_NAME ’STAR.STATISTICS’)

Provide function mapping statistical information to the optimizer:

Chapter 13. Modifying the federated system 225

Suppose that you want to map the local function UCASE(CHAR) to a UDF
that is used at an Oracle data source called ORACLE2. You want to include
the estimated number of instructions per invocation of the Oracle UDF. The
syntax is:
CREATE FUNCTION MAPPING MY_ORACLE_FUN4 FOR SYSFUN.UCASE(CHAR)
SERVER ORACLE2 OPTIONS (REMOTE_NAME ’UPPERCASE’, 99 INSTS_PER_INVOC ’1000’)

Disabling default function mappings:

Default function mappings can be rendered inoperable by disabling them
(they cannot be dropped). To disable a default function mapping, the CREATE
FUNCTION MAPPING statement specifies the name of the DB2 function and
sets the DISABLE option to ’Y’.

Assume that there is a default function mapping between the DB2 WEEK
function and a similar function on Oracle data sources. When a query that
requests Oracle data and that references WEEK is processed, either function
might be invoked. The function invoked depends on which function is
estimated by the optimizer to require less overhead. Suppose that you want to
determine how performance would be affected if only the WEEK function is
invoked for such queries. To ensure that WEEK is invoked each time, you
must disable the mapping. The syntax is:
CREATE FUNCTION MAPPING FOR SYSFUN.WEEK(INT)
TYPE ORACLE OPTIONS (DISABLE ’Y’)

Related concepts:

v “Function mappings and function templates” on page 20
v “Function mappings options” on page 22

Related reference:

v “CREATE FUNCTION MAPPING statement” in the SQL Reference, Volume 2

v Appendix F, “Function mapping options for federated systems” on page 301

Creating and modifying remote tables using transparent DDL

Transparent DDL is a capability of DB2 federation that assists database
administrators in creating and modifying tables that reside on remote data
sources without needing to use PASSTHRU sessions. Transparent DDL allows
you to affect table definitions.

The SQL statements you use with transparent DDL are CREATE TABLE,
ALTER TABLE, and DROP TABLE.

226 DB2 Federated Systems Guide

A transparent DDL CREATE TABLE statement creates a remote table at the
data source and a nickname for that table at the federated server, in the same
transaction. It will map the DB2 data types you specify to the remote data
types using the default reverse type mappings. For most data sources, the
default type mappings are in the wrappers. The default type mappings for
DB2 family data sources are in the DRDA wrapper. The default type
mappings for Informix are in the INFORMIX wrapper, and so forth. If you are
using the Oracle SQLNET wrapper and specify the DB2 CLOB data type, it
will be mapped to the Oracle LONG data type.

The advantage of using transparent DDL, is that a DB2 database administrator
can use procedures they are familiar with to create both local and remote
tables. The database administrator can either use the DB2 Control Center or
DDL statements in the DB2 command line processor (CLP) to create the
tables. This avoids the need to learn the different DDL syntax required for
each data source.

Recommendation: Use the remote table wizard in the DB2 Control Center to
create remote tables.

Prerequisites:

Before you can create remote tables on a data source, you need to setup the
configuration to that data source:
v The wrapper needs to be created for that data source type.
v The server definition needs to be created for the server where the remote

table will be located.
v The user mappings need to be created between DB2 and the data source

server.

The privileges held by the authorization ID of the transparent DDL statements
must include at least one of the following:
v SYSADM or DBADM authority
v CREATETAB authority on the database and USE privilege on the table

space as well as one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table

refers to an existing schema

Restrictions:

Transparent DDL has some limitations:

Chapter 13. Modifying the federated system 227

v You can only create base tables on the remote data source. You cannot
specify tablespaces.

v You can specify basic column information in the table definition, but you
will not be able to specify table options or column options. For example,
the LOB options (LOGGED and COMPACT) are not supported.

v You cannot specify a comment on a column.
v You cannot generate column contents.
v You can specify a primary key, but you cannot specify a foreign key or

check constraints.
v You cannot create indexes for the table.
v Data capture is not supported.
v You cannot drop a column from a remote table created using transparent

DDL.
v You cannot modify the parameters of existing columns, such as the data

type or length.
v You cannot modify or drop tables that were created at the remote data

source.

See the DB2 SQL Reference for the complete syntax for the CREATE TABLE,
ALTER TABLE, and DROP TABLE statements.

Creating new remote tables using transparent DDL
To create a remote table using transparent DDL, you can use either the DB2
Control Center wizard or the CREATE TABLE statement. Use the remote table
wizard in the DB2 Control Center to avoid specifying a parameter or option
that is not supported. Through the wizard you can specify columns by
selecting from a list of predefined columns, or by specifying the attributes for
a new column.

Suppose you want to create the table EMPLOYEE on an Oracle server. Using
the CLP to create the table, the syntax is:
CREATE TABLE EMPLOYEE

EMP_NO SMALLINT NOT NULL,
NAME VARCHAR(9),
DEPT SMALLINT,
REGION VARCHAR(12)
JOB CHAR(5),
HIREDATE DATE,
SALARY DECIMAL(7,2),
PRIMARY KEY (EMP_NO)
OPTIONS (REMOTE_SERVER ’ORASERVER’,
REMOTE_TABNAME ’EMPLOY’, REMOTE_SCHEMA ’J15USER1’)

228 DB2 Federated Systems Guide

Altering remote tables that were created transparent DDL
The ALTER TABLE statement is used to modify tables created using
transparent DDL. You cannot modify tables that were created at the remote
data source. Using the ALTER TABLE statement you can:
v Create new columns
v Modify the table primary key.

However, transparent DDL does impose some limitations on the modifications
you can make with the ALTER TABLE statement:
v You cannot drop a column from a remote table.
v You cannot rearrange the existing columns in the table. You can specify

only the placement of new columns you add.

To alter a remote table using transparent DDL, you can use either the DB2
Control Center or the ALTER TABLE statement. Use the DB2 Control Center
to avoid specifying a parameter or option that is not supported.

Suppose you want to change the primary key on a remote table EMPLOYEE
on an Oracle server that you created using transparent DDL. Using the CLP to
modify the table, the syntax is:
ALTER TABLE EMPLOYEE

PRIMARY KEY (EMP_NO, REGION)

Suppose you want to add the columns ORDER_DATE and SHIP_DATE to the
remote table SPALTEN that was created using transparent DDL. Using the
CLP to create the table, the syntax is:
ALTER TABLE SPALTEN ADD COLUMN
ORDER_DATE DATE
SHIP_DATE DATE

Dropping remote tables that were created transparent DDL
To drop a remote table using transparent DDL, you can use either the DB2
Control Center or the DROP TABLE statement. Dropping a remote table that
was created using transparent DDL also drops the corresponding nickname
for that table, and invalidates plans on that nickname.

To drop the table SPALTEN, the syntax is:
DROP TABLE SPALTEN

Related concepts:

v “Fast track to configuring your data sources” on page 85

Related tasks:

v “Altering a remote table : Federated Systems help” in the Help: Federated
Systems

Chapter 13. Modifying the federated system 229

v “Altering the columns in a remote table : Federated Systems help” in the
Help: Federated Systems

v “Creating a remote table : Federated Systems help” in the Help: Federated
Systems

Related reference:

v “ALTER TABLE statement” in the SQL Reference, Volume 2

v “CREATE TABLE statement” in the SQL Reference, Volume 2

v “DROP statement” in the SQL Reference, Volume 2

v Appendix I, “Default reverse data type mappings” on page 323

230 DB2 Federated Systems Guide

Chapter 14. Tuning and performance issues with a
federated system

Performance problems can originate at either federated database, the data
sources, or both. A bottleneck at either the federated database or the data
sources can degrade performance. Isolating problems involves tuning the
federated database and data sources for maximum performance. It may
require tuning queries, applications, configuration parameters, and network
usage to solve these problems.

Tuning query processing

To obtain data from data sources clients (users and applications) submit
queries in DB2® SQL to the federated database. The DB2 SQL Compiler then
consults information in the global catalog and the data source wrapper to help
it process the query. This includes information about connecting to the data
source, server attributes, mappings, index information, and processing
statistics.

As part of the SQL Compiler process, the query optimizer analyzes a query. The
Compiler develops alternative strategies, called access plans, for processing the
query. The access plans might call for the query to be:
v Processed by the data sources.
v Processed by the federated server.
v Processed partly by the data sources and partly by the federated server.

DB2 evaluates the access plans primarily on the basis of information about the
data source capabilities and the data. The wrapper and the global catalog
contain this information. DB2 decomposes the query into segments that are
called query fragments. Typically it is more efficient to pushdown a query
fragment to a data source, if the data source can process the fragment.
However, the query optimizer takes into account other factors such as:
v The amount of data that needs to be processed.
v The processing speed of the data source.
v The amount of data that the fragment will return.
v The communication bandwidth.

Note: Pushdown analysis is only performed on relational data sources.
Pushdown analysis does not determine how a query can be pushed down for
non-relational data sources.

© Copyright IBM Corp. 1998 - 2002 231

The following figure illustrates the steps performed by the SQL Compiler
when it processes a query.

The query optimizer generates local and remote access plans for processing a
query fragment, based on resource cost. DB2 then chooses the plan it believes
will process the query with the least resource cost.

SQL Query

Visual
Explain

db2exfmt
Tool

db2expln
Tool

SQL Compiler

Check
Semantics

Rewrite
Query

Optimize
Access Plan

Generate
Executable Code

Execute Plan

Query
Graph
Model

Access
Plan

Parse Query

Executable
Plan

Explain
Tables

Pushdown
Analysis

Remote SQL
Generation

Figure 6. SQL Compiler query analysis flowchart

232 DB2 Federated Systems Guide

If any of the fragments are to be processed by data sources, DB2 submits
these fragments to the data sources. After the data sources process the
fragments, the results are retrieved and returned to DB2. If DB2 performed
any part of the processing, it combines its results with the results retrieved
from the data source. DB2 then returns all results to the client.

The major task of pushdown analysis is to recommend to the optimizer
whether an operation can be remotely evaluated. It is just a recommendation.
The optimizer might choose to not perform an operation directly on a remote
data source because it is less cost-effective. A secondary task of pushdown
analysis is to attempt to transform the query into a form that can be better
optimized by both the DB2 optimizer and remote query optimizers.

The final access plan selected by the optimizer can consist of operations at the
remote data source. For those operations that will be performed by each data
source, remote SQL generation creates an efficient SQL statement based on the
data source SQL dialect. This helps produce an optimal plan for the query for
all data sources, and is called global optimization.

For non-relational sources, the wrappers are responsible for their own
statement generation.

Related concepts:

v “Pushdown analysis” on page 233

Related tasks:

v “Global optimization” on page 246

Pushdown analysis

Pushdown analysis is performed on relational data sources. Pushdown
analysis tells the query optimizer if a remote data source can perform an
operation. An operation can be a function, such as relational operator, system
or user functions, or an SQL operator (GROUP BY, ORDER BY, and so on).

Functions that cannot be pushed-down, can significantly impact query
performance. Consider the effect of forcing a selective predicate to be
evaluated locally instead of at the remote data source. This approach could
require the federated server to retrieve the entire table from the remote data
source, and then filter the table locally against the predicate. If your network
is constrained—and the table is large—query performance could suffer.

Operators that are not pushed-down can also significantly impact query
performance. For example, having a GROUP BY operator aggregate remote

Chapter 14. Tuning and performance issues with a federated system 233

data locally could, once again, require the federated server to retrieve the
entire table from the remote data source.

For example, suppose that the nickname EMP references the table
EMPLOYEE. This table has 10,000 rows. One column contains the last names
of employees, and one column contains the salary for each employee. The
following query is sent to the federated server to compute the number of
employees with a last name that starts with ’B’ who are paid higher than
50,000.
SELECT LASTNAME, COUNT (*) FROM EMP
WHERE LASTNAME = ’B’ AND SALARY > 50000
GROUP BY LASTNAME;

When the DB2® SQL Compiler receives this statement, it considers several
possibilities:
v The collating sequences are the same. It is likely that the query predicate

will be pushed-down to the data source. It is usually more efficient to filter
and group results at the data source instead of copying the entire table to
the federated server and performing the operations locally. Pushdown
analysis determines if operations can be performed at the data source. Since
the collating sequences are the same, the predicate and the GROUP BY
operation can take place at the data source.

v The collating sequences are the same, and the query optimizer knows that
the federated server is very fast. It is possible that the query optimizer will
decide that performing the GROUP BY operation locally is the best (least
cost) approach. The predicate will be pushed-down to the data source for
evaluation. This is an example of pushdown analysis combined with global
optimization.

v The collating sequences are not the same. Pushdown analysis will
determine that the entire WHERE clause cannot be evaluated at the data
source. However, the query optimizer might decide it is more efficient to
pushdown the SALARY > 50000 portion of the predicate. The range
comparison must still be done at the federated database. This is another
example of pushdown analysis combined with global optimization.

The SQL Compiler will consider the available access plans, and then choose
the plan that is the most efficient.

In general, the goal is to ensure that the query optimizer considers pushing
down the functions and operators to the data sources for evaluation. Many
factors can affect whether a function or an SQL operator is evaluated at a
remote data source. The key factors which influence the query optimizer are:
server characteristics, nickname characteristics, and query characteristics.

Related concepts:

234 DB2 Federated Systems Guide

v “Server characteristics affecting pushdown opportunities” on page 235
v “Nickname characteristics affecting pushdown opportunities” on page 239
v “Query characteristics affecting pushdown opportunities” on page 241

Pushdown analysis-details

Server characteristics affecting pushdown opportunities

The following sections contain data source-specific factors that can affect
pushdown opportunities. In general, these factors exist because you use the
DB2® SQL dialect to submit queries and the DB2 dialect may offer more
functionality than the data source SQL dialect. The DB2 federated server can
compensate for the lack of function at a data server, but doing so may require
that the operation take place at the federated server.

SQL differences
v SQL capabilities. Each data source supports a variation of the SQL dialect

and different levels of functionality. For example, consider the GROUP BY
list. Most data sources support the GROUP BY operator. However some
data sources have restrictions on the number of items on the GROUP BY
list, or restrictions on whether an expression is allowed on the GROUP BY
list. If there is a restriction at the remote data source, the federated server
might have to perform the GROUP BY operation locally.

v SQL restrictions. Each data source can have different SQL restrictions. For
example, some data sources require parameter markers to bind in values to
remote SQL statements. Therefore, parameter marker restrictions must be
checked to ensure that each data source can support such a bind
mechanism. If the federated server cannot determine a good method to
bind in a value for a function, this function must be evaluated locally.

v SQL limitations. The federated server might allow the use of larger integers
than the remote data sources. However, limit-exceeding values cannot be
embedded in statements that are sent to the data sources. Therefore, the
function or operator that operates on this constant must be evaluated
locally.

v Server specifics. Several factors fall into this category. One example is
sorting NULL values (highest, or lowest, depending on the ordering). For
example, if the NULL value is sorted at a data source differently from the
federated serve, ORDER BY operations on a nullable expression cannot be
remotely evaluated.

Collating sequence
If you set the COLLATING_SEQUENCE server option to “Y”, you are telling
the federated database that the data source collating sequence matches the
DB2 collating sequence. This setting allows the optimizer to consider order

Chapter 14. Tuning and performance issues with a federated system 235

dependent processing at a data source, which can improve performance. Set
the COLLATING_SEQUENCE server option value for a data source to ’Y’
when one of the following is true:
1. All data source character data is upper case
2. All data source character data is lower case
3. All data source character data is composed of numbers0 through 9 only,

with no other characters such as blanks

If the data source collating sequence is not the same as the federated database
collating sequence, you can receive incorrect results. For example, if your plan
uses merge joins, the optimizer will push down ordering operations to the
data sources as much as possible. If the data source collating sequence is not
the same, the join results may not have a correct result set. Set the
COLLATING_SEQUENCE server option to “N” if you are not sure that the
collating sequence at the data source is identical to the DB2 collating
sequence.

Alternatively, you can configure a federated database to use the same collating
sequence that a data source uses. You then set the COLLATING_SEQUENCE
server option to ’Y’. This allows the optimizer to consider ″pushing-down″
character range comparison predicates.

To determine if a data source and DB2 have the same collating sequence,
consider the following factors:
v National language support

The collating sequence is related to the language supported on a server.
Compare the DB2 NLS information for your operating system to the data
source NLS information.

v Data source characteristics
Some data sources are created using case-insensitive collating sequences,
which can yield different results from DB2 in order-dependent operations.

v Customization
Some data sources provide multiple options for collating sequences or allow
the collating sequence to be customized.

When a query from a federated server requires sorting, the place where the
sorting is processed depends on several factors. If the federated database’s
collating sequence is the same as the data source collating sequence, the sort
can take place at the data source. If the collating sequences are the same, the
query optimizer can decide which is the most efficient way to complete the
query—a local sort or a remote sort. Likewise, if a query requires a
comparison of character data, this comparison can also be performed at the
data source.

236 DB2 Federated Systems Guide

Numeric comparisons, in general, can be performed at either location even if
the collating sequence is different. You may get incorrect results, however, if
the weighting of null characters is different between the federated database
and the data source. Likewise, for comparison statements, be careful if you are
submitting statement to a case-insensitive data source. The weights assigned
to the characters ″I″ and ″i″ in a case-insensitive data source are the same. For
example, in a case-insensitive data source with an English code page,
STEWART, SteWArT, , and stewart would all be considered equal. The DB2
federated database, by default, is case-sensitive and would assign different
weights to the characters.

If the collating sequences of the federated database and the data source differ,
the federated server retrieves the data to the federated database, so that it can
do the sorting and comparison locally. The reason is that users expect to see
the query results ordered according to the collating sequence defined for the
federated server; by ordering the data locally, the federated server ensures
that this expectation is fulfilled.

If your query contains an equal sign, it is possible to push-down that portion
of the query even if the collating sequences are different (set to ’N’). For
example, the predicate C1 = ’A’ could be pushed-down to a data source. Of
course, such queries cannot be pushed-down when the collating sequence at
the data source is case-insensitive. When a data source is case-insensitive, the
results from C1= ’A’ and C1 = ’a’ are the same, which is not acceptable in a
case-sensitive environment (DB2).

Administrators can create federated databases with a particular collating
sequence that matches the data source collating sequence. This approach may
speed performance if all data sources use the same collating sequence or if
most or all column functions are directed against data sources that use the
same collating sequence.

Retrieving data for local sorts and comparisons usually decreases
performance. Therefore, consider configuring the federated database to use
the same collating sequences that your data sources use. That way,
performance might increase, because the federated server can allow sorts and
comparisons to take place at data sources. For example, in DB2 for z/OS™

and OS/390, sorts defined by ORDER BY clauses are implemented by a
collating sequence based on an EBCDIC code page. If you want to use the
federated server to retrieve DB2 for z/OS and OS/390® data sorted in
accordance with ORDER BY clauses, it is advisable to configure the federated
database so that is uses a predefined collating sequence based on the EBCDIC
code page.

Chapter 14. Tuning and performance issues with a federated system 237

If the collating sequences at the federated database and the data source differ,
and you need to see the data ordered in the data source’s sequence, you can
submit your query in a pass-through session, or define the query in a data
source view.

Federated server options
The previously listed factors that affect pushdown opportunities are
characteristics of the database servers, and you can not change them. The
following server options can be set by you, and in some cases can affect query
performance:
v COLLATING_SEQUENCE. If a data source has a collating sequence that

differs from the DB2 for UNIX® and Windows® collating sequence, any
operation depending on the DB2 collating sequence cannot be remotely
evaluated at a data source. An example is executing MAX column functions
against a nickname character column at a data source with a different
collating sequence. Because results might differ if the MAX function is
evaluated at the remote data source, the federated database will perform
the aggregate operation and the MAX function locally.

v VARCHAR_NO_TRAILING_BLANKS. This option is for varying-length
character strings that contain no trailing blanks. Some data sources, such as
Oracle, have non-blank-padded comparison semantics that return the same
results as the DB2 for UNIX and Windows comparison semantics. If you are
certain that all VARCHAR and VARCHAR2 columns at a data source
contain no trailing blanks, consider creating this server option for a data
source. Ensure that you consider all objects that can potentially have
nicknames, including views.

Type and function mapping factors
The default data type mappings are built into the data source wrappers. These
mappings are designed so that sufficient buffer space is given to each data
source data type to avoid runtime buffer overflow. You can customize the type
mapping for a specific data source to suit specific applications. For example, if
you are accessing an Oracle data source column with a DATE data type it will
be mapped by default to the DB2 for UNIX and Windows TIMESTAMP data
type. You can change the local data type to the DB2 for UNIX and Windows
DATE data type. This change bypasses the use of a SCALAR function to
extract a subset of the total data stored in the TIMESTAMP data type.

The default function mappings are also built into the data source wrappers.
The federated database will compensate for functions that are not supported
by a data source. There are three cases where function compensation will
occur:
v A function simply does not exist at the data source. Some of the SYSFUN

functions, for example, do not exist on DB2 for z/OS and OS/390 data
sources, and thus require local compensation.

238 DB2 Federated Systems Guide

v A function exists at the data source; however, the characteristics of the
operand violate function restrictions. An example is the IS NULL relational
operator. Most data sources support it, but some have restrictions such as
only allowing a column name on the left hand side of the IS NULL
operator.

v A function, if evaluated remotely, may return a different result. An example
is the ’>’ (greater than) operator. For those data sources with different
collating sequences, the greater than operator may return different results
than if it is evaluated locally by DB2 for UNIX and Windows.

Related concepts:

v “Collating Sequences” in the Application Development Guide: Programming
Client Applications

v “Tuning query processing” on page 231
v “Pushdown analysis” on page 233
v “Nickname characteristics affecting pushdown opportunities” on page 239
v “Query characteristics affecting pushdown opportunities” on page 241

Related tasks:

v “Creating and modifying function mappings” on page 223
v “Modifying default data type mappings” on page 208
v “Accessing data sources using PASSTHRU” on page 181

Related reference:

v Appendix C, “Server options for federated systems” on page 287

Nickname characteristics affecting pushdown opportunities

There are several nickname-specific factors that can affect pushdown
opportunities. The local data type of a nickname column can affect the
number of possibilities in a joining sequence evaluated by the optimizer.
Nicknames can be flagged with a column option to indicate the columns
contain no trailing blanks. This gives the SQL Compiler the opportunity to
generate a more efficient form of a predicate for the SQL statement sent to the
data sources.

Local data type of a nickname column
Ensure that the local data type of a column does not prevent a predicate from
being evaluated at the data source. The default data type mappings are
provided to avoid any possible overflow. However, a joining predicate
between two columns of different lengths might not be considered at the data
source whose joining column is shorter, depending on how DB2® binds in the
longer column. This situation can affect the number of possibilities in a
joining sequence evaluated by the optimizer. For example, Oracle data source

Chapter 14. Tuning and performance issues with a federated system 239

columns created using the INTEGER or INT data type are given the type
NUMBER(38). A nickname column for this Oracle data type will be given the
local data type FLOAT because the range of a DB2 integer is from 2**31 to
(-2**31)-1, which is roughly equal to NUMBER(9). In this case, joins between a
DB2 integer column and an Oracle integer column cannot take place at the
DB2 data source (shorter joining column). However, if the domain of this
Oracle integer column can be accommodated by the DB2 INTEGER data type,
change its local data type with the ALTER NICKNAME statement so that the
join can take place at the DB2 data source.

Federated column options
The column options tell the wrapper to handle the data in a column
differently than it normally would handle it. The SQL Complier and query
optimizer use the metadata to develop better plans for accessing the data. DB2
treats the object that a nickname references as if it is a table. As a result, you
can set column options for any data source object that you create a nickname
for. The ALTER NICKNAME statement can be used to add or change column
options for nicknames. There are two column options:
v NUMERIC_STRING. This column option applies to character type columns

(CHAR and VARCHAR). Suppose that a data source has a collating
sequence that differs from the federated database collating sequence. The
federated server typically would not sort any columns containing character
data at the data source. It would return the data to the federated database
and perform the sort locally. However, suppose that the column is a
character data type and contains only numeric characters (’0’,’1’,...,’9’). You
can indicate this by assigning a value of ’Y’ to the NUMERIC_STRING
column option. This gives the DB2 query optimizer the option of
performing the sort at the data source. If the sort is performed remotely,
you can avoid the overhead of porting the data to the federated server and
performing the sort locally.

v VARCHAR_NO_TRAILING_BLANKS. Unlike the server option with the
same name, this column option can be used to identity specific Oracle
columns that contain no trailing blanks. The SQL Compiler pushdown
analysis step will then take this information into account when checking all
operations performed on columns which have this setting. Based on the
VARCHAR_NO_TRAILING_BLANKS setting, the SQL Compiler may
generate a different but equivalent form of a predicate used in the remote
SQL statement sent to the data source. You might see a different predicate
being evaluated against the data source, but the net result should be
equivalent.

Related concepts:

v “Tuning query processing” on page 231
v “Pushdown analysis” on page 233
v “Server characteristics affecting pushdown opportunities” on page 235

240 DB2 Federated Systems Guide

v “Query characteristics affecting pushdown opportunities” on page 241

Related tasks:

v “Altering a nickname” on page 199

Related reference:

v Appendix E, “Column options for federated systems” on page 299

Query characteristics affecting pushdown opportunities

A query can reference a SQL operator that involves nicknames from multiple
data sources. When the federated server combines the results from two
referenced data sources by using one operator, the operation must take place
at the federated server. An example of this is a set operator, like UNION. The
operator cannot be evaluated at a remote data source directly.

Related concepts:

v “Server characteristics affecting pushdown opportunities” on page 235
v “Nickname characteristics affecting pushdown opportunities” on page 239

Pushdown analysis decisions

Rewriting your SQL statements can provide additional pushdown
opportunities when the federated server processes queries. To help determine
the optimal SQL rewrites, the following sections introduce several tools you
can use to determine where a query is evaluated for pushdown, list common
questions (and suggested areas to investigate) associated with query analysis,
and address data source upgrade issues.

Analyzing where a query is evaluated

Detailed query optimizer information is kept in explain tables separate from
the actual access plan itself. This information allows for in-depth analysis of
an access plan. The explain tables are accessible on all supported operating
systems, and contain information for both static and dynamic SQL statements.
You can access the explain tables using SQL statements. This allows for easy
manipulation of the output, for comparison among different queries, or for
comparisons of the same query over time.

Procedure:

There are three ways to get information from the explain tables.
v Explain table format tool. Use the db2exfmt tool to present the information

from the explain tables in a predefined format.

Chapter 14. Tuning and performance issues with a federated system 241

v Visual Explain. Use the db2dd or the db2vexp command to start Visual
Explain. Use this tool to view the query access plan graph. In case of a
SELECT query involving a nickname, you will always see a SHIP operator.
A statement may or may not be associated with the SHIP. If the operators
below SHIP are being processed by the remote data source, then there will
be a remote SQL statement associated with SHIP. If the operators below
SHIP are being processed by the federated server, then the remote SQL
statement will not be associated with SHIP. In the case of INSERT, UPDATE
or DELETE operations involving a nickname, you may or may not see a
SHIP. If the INSERT, UPDATE or DELETE statement is completely
evaluated by the remote data source, then you will not see a SHIP in the
access plan. In this case, the remote SQL statement will be found in the
RETURN operator (the top operator).

v SQL Explain. Use the db2expln or the dynexpln command to start SQL
Explain. Use this tool to view the access plan strategy as text. SQL explain
does not provide a graphical user interface. When the query optimizer
generates a remote plan, it takes into consideration different factors
regarding the capability of remote data source. The optimizer expects that
the remote data source will use a plan similar to the plan it generates. But
the remote data source is free to choose and use any plan it sees fit. The
SQL Explain tool does not display the remote part of the access plans.

Related concepts:

v “Explain tools” in the Administration Guide: Performance

v “SQL explain tools” in the Administration Guide: Performance

v “db2expln syntax and parameters” in the Administration Guide: Performance

v “dynexpln” in the Administration Guide: Performance

v “Description of db2expln and dynexpln output” in the Administration Guide:
Performance

v “Tuning query processing” on page 231
v “Pushdown analysis” on page 233
v “Understanding access plan optimization decisions” on page 253
v “Data source upgrades and customization” on page 245

Related tasks:

v “Global optimization” on page 246

Understanding access plan evalutation decisions

This section lists typical access plan analysis questions, and areas you can
investigate to increase pushdown opportunities.

242 DB2 Federated Systems Guide

Why isn’t this predicate being evaluated remotely?
This question arises when a predicate is very selective and thus could be used
to filter rows and reduce network traffic. Remote predicate evaluation also
affects whether a join between two tables of the same data source can be
evaluated remotely.

Areas to examine include:
v Subquery predicates. Does this predicate contain a subquery that pertains to

another data source? Does this predicate contain a subquery involving an
SQL operator that is not supported by this data source? Not all data sources
support set operators in a predicate

v Predicate functions. Does this predicate contain a function that cannot be
evaluated by this remote data source? Relational operators are classified as
functions.

v Predicate bind requirements. Does this predicate, if remotely evaluated,
require bind-in of some value? If so, would it violate SQL restrictions at this
data source?

v Global optimization. The optimizer may have decided that local processing
is more cost-effective.

Why isn’t the GROUP BY operator evaluated remotely?
There are several areas you can check:
v Is the input to the GROUP BY operator evaluated remotely? If the answer is

no, examine the input.
v Does the data source have any restrictions on this operator? Examples

include:
– Limited number of GROUP BY items
– Limited byte counts of combined GROUP BY items
– Column specification only on the GROUP BY list

v Does the data source support this SQL operator?
v Global optimization. The optimizer may have decided that local processing

is more cost-effective.

Why isn’t the SET operator evaluated remotely?
There are several areas you can check:
v Are both of its operands completely evaluated at the same remote data

source? If the answer is no and it should be yes, examine each operand.
v Does the data source have any restrictions on this SET operator? For

example, are large objects or long fields valid input for this specific SET
operator?

Why isn’t the ORDER BY operation evaluated remotely?
Consider:

Chapter 14. Tuning and performance issues with a federated system 243

v Is the input to the ORDER BY operation evaluated remotely? If the answer
is no, examine the input.

v Does the ORDER BY clause contain a character expression? If yes, does the
remote data source have a different collating sequence than the federated
server collating sequence?

v Does the data source have any restrictions on this operator? For example, is
there a limited number of ORDER BY items? Does the data source restrict
column specification to the ORDER BY list?

Why is a remote INSERT with a fullselect statement not completely
evaluated remotely?
Consider:
v Could the subselect be completely evaluated on the remote data source? If

no, examine the subselect.
v Does the subselect contain a set operator? If yes, does this data source

support set operators as input to an INSERT?
v Does the subselect reference the target table? If yes, does this data source

allow this syntax?

Why is a remote INSERT with VALUES clause statement not completely
evaluated remotely?
Consider:
v Can the VALUES clause be completely evaluated at the remote data source?

In other words, does an expression contain a function not supported by the
remote data source?

v Does the expression involve a scalar subquery? Is that syntax supported?
v Does the expression reference the target table? Is that syntax supported?

Why is a remote, searched UPDATE statement not completely evaluated
remotely?
Consider:
v Can the SET clause be completely evaluated at the remote data source? In

other words, does an update expression contain a function not supported
by the remote data source?

v Does the SET clause involve a scalar subquery? Does the data source allow
this syntax?

v Can the search condition be completely evaluated at the remote data
source? If the answer is no, examine the search condition instead.

v Does the search condition or SET clause reference the target table? Does the
data source allow this syntax?

v Does the search condition or SET clause reference the target table with
correlation? Does the data source allow this syntax?

244 DB2 Federated Systems Guide

Why is a positioned UPDATE statement not completely evaluated
remotely?
This happens when DB2® chooses to evaluate the update expression locally
before sending the UPDATE statement to the data source. This approach
should not significantly affect performance.
v Can the SET clause be completely evaluated at the remote data source? In

other words, does an update expression contain a function not supported
by the remote data source?

v Does the SET clause involve a scalar subquery? Does the data source allow
this syntax?

Why is a remote, searched DELETE statement not completely evaluated
remotely?
Consider:
v Can the search condition be completely evaluated at the remote data

source? If the answer is no, examine the search condition instead.
v Does the search condition reference the target table? Does the data source

allow this syntax?
v Does the search condition reference the target table with correlation? Does

the data source allow this syntax?

Related concepts:

v “Pushdown analysis” on page 233
v “Analyzing where a query is evaluated” on page 241

Data source upgrades and customization
The DB2® SQL Compiler relies on information that is stored in the global
catalog to provide it with the SQL capabilities of the data sources. This
information periodically needs to be updated. The SQL capabilities of the data
sources might change in new versions of the data sources. When data sources
are upgraded or customized, update the global catalog information so that the
SQL Compiler is using the most current information.

Use DB2 SQL DDL statements, such as CREATE FUNCTION MAPPING and
CREATE SERVER OPTION, to update the catalog.

Related concepts:

v “Tuning query processing” on page 231
v “Pushdown analysis” on page 233
v “Server characteristics affecting pushdown opportunities” on page 235
v “Nickname characteristics affecting pushdown opportunities” on page 239
v “Query characteristics affecting pushdown opportunities” on page 241
v “Analyzing where a query is evaluated” on page 241

Chapter 14. Tuning and performance issues with a federated system 245

v “Understanding access plan evalutation decisions” on page 242

Related tasks:

v “Modifying server definitions” on page 203
v “Creating and modifying function mappings” on page 223
v “Global optimization” on page 246

Global optimization

The SQL Compiler has two phases which help to produce an optimal access
strategy for evaluating a query referencing a remote data source. These phases
are: remote SQL generation and global optimization. For a query submitted to
the federated database, the access strategy might involve breaking down the
original query into a set of query fragments and then combining the results.

Using the output of the pushdown analysis phase as a recommendation, the
query optimizer decides where each operation will be evaluated. An operation
might be evaluated locally at the DB2 federated server or remotely at the data
source. The decision is based on the output of the sophisticated fixed cost
model used by the optimizer. This model determines:
v The cost to evaluate the operation.
v The cost to transmit the data or messages between the DB2 federated server

and the data sources.

The goal is to produce an optimized query. An optimized query, is a query
with an access plan that optimizes the query operations of all data sources,
globally across the federated system. Global optimization is reached when an
access plan with the least cost is selected.

The DB2 SQL Compiler has an optimizer knowledge base that contains data
about native data sources. The optimizer does not generate remote access
plans that cannot be generated by specific DBMSs. In other words, optimizer
avoids generating plans that optimizers at remote data sources cannot
understand or accept.

Many factors can affect the output from global optimization and thus affect
query performance. The key factors are: server characteristics and nickname
characteristics.

Related concepts:

v “Tuning query processing” on page 231
v “Pushdown analysis” on page 233
v “Server characteristics affecting global optimization” on page 247

246 DB2 Federated Systems Guide

Related tasks:

v “Nickname characteristics affecting global optimization” on page 249

Global optimization-details

Server characteristics affecting global optimization

You provide the query optimizer with information about the data source
server characteristics through the server option settings. The server option
settings are part of the data source server definition. You can set server
options in the CREATE SERVER statement, when you initially establish the
server definition. Use the ALTER SERVER statement to add server options to
an existing server definition. The server option settings are stored in the
federated database global catalog.

These options are separated into three categories: location options (such as the
data source machine name), security options (such as authentication
information), and performance options (such as the CPU ratio).

The performance options help the optimizer determine if evaluation
operations can be done at data sources. The server options affecting
performance that might require your tuning are:
v CPU_RATIO
v IO_RATIO
v COMM_RATE
v COLLATING_SEQUENCE
v PLAN_HINTS

Relative ratio of CPU speed
This value indicates how much faster or slower the data source CPU speed is
compared with the DB2® CPU. A low ratio indicates that the data source
workstation CPU is faster than the DB2 workstation CPU. For low ratios, the
optimizer will consider pushing-down operations that are CPU-intensive to
the data source.

Relative ratio of I/O speed
This value indicates how much faster or slower the data source I/O speed is
compared with the federated server I/O speed. A low ratio indicates that the
data source workstation I/O speed is faster than the DB2 workstation I/O
speed. For low ratios, the query optimizer will consider pushing-down
I/O-intensive operations to the data source.

Communication rate between the federated server and the data source
A low communication rate indicates slow network communication between
the federated server and the data source. Lower communication rates

Chapter 14. Tuning and performance issues with a federated system 247

encourage the query optimizer to reduce the number of messages sent to or
from this data source. If the COMM_RATE server option is set to a very small
number, the optimizer produces a query requiring minimal network traffic.

Data source collating sequence
Your choice of collating sequence might affect performance of the federated
database. Use the COLLATING_SEQUENCE server option to indicate if a data
source collating sequence matches the local DB2 federated database collating
sequence. DB2 can push down order-dependent processing involving
character data to the data source. If a data source collating sequence does not
match the federated database collating sequence, the optimizer considers data
retrieved from this data source as unordered. DB2 will retrieve the relevant
data and do all order-dependent processing on character data locally (which
can slow performance). Collating sequence is discussed in the topic Server
characteristics affecting pushdown opportunities.

Remote plan hints
Use the PLAN_HINTS server option to indicate if plan hints are supported at
the data source. Plan hints are statement fragments that provide extra
information for data source optimizers. This information can, for certain query
types, improve query performance. The plan hints can help the data source
optimizer decide whether to use an index, which index to use, or which table
join sequence to use.

If plan hints are enabled, the query sent to the data source contains additional
information. For example, a statement sent to an Oracle optimizer with plan
hints could look like this:
SELECT /*+ INDEX (table1, tlindex)*/
col1
FROM table1

The plan hint is the string /*+ INDEX (table1, t1index)*/

Related concepts:

v “Fast track to configuring your data sources” on page 85
v “Server characteristics affecting pushdown opportunities” on page 235
v “Analyzing global optimization” on page 252
v “Understanding access plan optimization decisions” on page 253

Related tasks:

v “Global optimization” on page 246
v “Nickname characteristics affecting global optimization” on page 249

Related reference:

v “ALTER SERVER statement” in the SQL Reference, Volume 2

248 DB2 Federated Systems Guide

v Appendix C, “Server options for federated systems” on page 287

Nickname characteristics affecting global optimization

There are several nickname-specific factors that can affect global optimization,
including the index information and the global catalog statistics.

It is important that the index information and global catalog statistical data
available to the SQL Compiler is current.

Index specifications
The SQL Compiler uses index information to optimize queries. The index
information for a table is initially acquired when the nickname is created for
that table. Index information is not gathered for nicknames on objects that do
not have indexes such as views, synonyms, or non-relational data source
objects.

If a nicknamed object does not have an index, you can create an index
specification for it. Index specifications build an index definition in the global
catalog. The index specification is not an actual index. Use the CREATE
INDEX statement with the SPECIFICATION ONLY clause to create an index
specification. The syntax for creating an index specification on a nickname is
similar to the syntax for creating an index on a local table.

Consider creating index specifications when:
v A nickname is created for a table that has no index.
v You create a nickname for a data source object that does not contain

indexes such as a view or a synonym.
v The remote index is on a column of more than 255 bytes, or contains a total

key length in excess of 1024 bytes.
v The remote index is on a LOB column.
v You want to encourage the query optimizer to use a specific nickname as

the inner table of a nested loop join. You can create an index on the joining
column if none exists.

Consider your needs before issuing CREATE INDEX statements against a
nickname for a view.
v If the view is a simple SELECT on a table with an index, creating indexes

on the nickname (locally) that match the indexes on the table at the data
source can significantly improve query performance.

v If indexes are created locally over views that are not simple SELECT
statements (for example, a view created by joining two tables), query
performance may suffer.

Chapter 14. Tuning and performance issues with a federated system 249

Suppose that an index is created over a view that is a join of two tables. The
optimizer may choose that view as the inner element in a nested loop join.
The query will have poor performance because the join will be evaluated
several times. An alternative is to create nicknames for each of the tables
referenced in the data source view and create a federated view that references
both nicknames.

Global catalog statistics
The federated database relies on catalog statistics for nicknamed objects to
optimize query processing. These statistics are gathered when you create a
nickname for a data source object using the CREATE NICKNAME statement.
The federated database verifies the presence of the object at the data source,
and then attempts to gather existing data source statistical data. Information
useful to the optimizer is read from the data source catalogs and put into the
global catalog on the federated server. Because some or all of the data source
catalog information might be used by the optimizer, it is advisable to update
statistics (using the data source command equivalent to RUNSTATS) at the
data source before you create a nickname.

Catalog statistics describes the overall size of tables and views, and the range
of values in associated columns. The information includes the:
v Number of rows in a nickname object
v Number of pages that a nickname occupies
v Highest/lowest values of a column

Note: In this version of DB2, the RUNSTATS utility can not be used to update
nickname statistics.

While the federated database can retrieve the statistical data held at a data
source, it cannot automatically detect updates to existing statistical data at
data sources. Furthermore, federated database has no mechanism for handling
object definition or structural changes to objects at the data sources (such as
when a column is added to a table).

If the statistical data or structural data for an object has changed, you have
two choices for updating the statistics.
v Run the equivalent of RUNSTATS at the data source. Then, drop the current

nickname. Re-create the nickname. Use this approach if structural
information has changed.

v Manually update the statistics in the SYSSTAT.TABLES catalog view. This
approach requires fewer steps but will not work if structural information
has changed.

Updating row changes:

250 DB2 Federated Systems Guide

If a large number of rows at the data source were added or deleted, the
federated database will not be aware of these changes. However you may
notice slower performance since the optimizer is making decisions based on
nickname information that is no longer accurate. Update the statistics for the
nickname so the optimizer has accurate statistics when it develops access
plans for processing queries against the data source.

Updating column changes:

If columns at the data source are added, deleted, or altered, you may notice
incorrect results or receive an error message. Suppose you have the nickname
EUROSALES which refers to the europe table in a Sybase database. If a new
column called CZECH is added to the table, the federated database will not be
aware of the CZECH column. Queries which reference that column will result
in an error message.

When there are column changes to a data source object, there are several steps
you need to take to update the statistics for that object in the federated
database catalog:
1. Run the utility on the data source that is equivalent to DB2 RUNSTATS.

This will update the statistics stored in the data source catalog.
2. Drop the current nickname for the data source object using the DROP

NICKNAME statement.
3. Re-create the nickname using the CREATE NICKNAME statement.

The nickname will now have updated statistical information consistent with
the data source object schema.

Related concepts:

v “Nickname characteristics affecting pushdown opportunities” on page 239
v “Server characteristics affecting global optimization” on page 247

Related tasks:

v “Dropping a nickname” on page 202
v “Creating index specifications for data source objects” on page 216

Global optimization decisions

The following sections introduce several tools you can use for analyzing
query optimization, and presents common questions (and suggested areas to
investigate) associated with query optimization.

Chapter 14. Tuning and performance issues with a federated system 251

Analyzing global optimization
Detailed query optimizer information is kept in explain tables separate from
the actual access plan itself. This information allows for in-depth analysis of
an access plan. The explain tables are accessible on all supported operating
systems, and contain information for both static and dynamic SQL statements.
You can access the explain tables using SQL statements. This allows for easy
manipulation of the output, for comparison among different queries, or for
comparisons of the same query over time.

Procedure:

There are three ways to get global access plan information from the explain
tables.
v Explain table format tool. Use the db2exfmt tool to present the information

from the explain tables in a predefined format.
v Visual Explain. Use the db2dd or the db2vexp command to start Visual

Explain. Use this tool to view the query access plan graph. In case of a
SELECT query involving a nickname, you will always see a SHIP operator.
A statement may or may not be associated with the SHIP. If the operators
below SHIP are being processed by the remote data source, then there will
be a remote SQL statement associated with SHIP. If the operators below
SHIP are being processed by the federated server, then the remote SQL
statement will not be associated with SHIP. In the case of INSERT, UPDATE
or DELETE operations involving a nickname, you may or may not see a
SHIP. If the INSERT, UPDATE or DELETE statement is completely
evaluated by the remote data source, then you will not see a SHIP in the
access plan. In this case, the remote SQL statement will be found in the
RETURN operator (the top operator).

v SQL Explain. Use the db2expln or the dynexpln command to start SQL
Explain. Use this tool to view the access plan strategy as text. SQL explain
does not provide a graphical user interface. When the query optimizer
generates a remote plan, it takes into consideration different factors
regarding the capability of remote data source. The optimizer expects that
the remote data source will use a plan similar to the plan it generates. But
the remote data source is free to choose and use any plan it sees fit. The
SQL Explain tool does not display the remote part of the access plans.

Related concepts:

v “Explain tools” in the Administration Guide: Performance

v “SQL explain tools” in the Administration Guide: Performance

v “Understanding access plan optimization decisions” on page 253

252 DB2 Federated Systems Guide

Understanding access plan optimization decisions

This section lists typical optimization questions, and areas you can investigate
to improve performance.

Why isn’t a join between two nicknames of the same data source being
evaluated remotely?
Areas to examine include:
v Join operations. Can the data source support them?
v Join predicates. Can the join predicate be evaluated at the remote data

source? If the answer is no, examine the join predicate.
v Number of rows in the join result. You can determine the number of rows

with Visual Explain. Does the join produce a much larger set of rows than
the two nicknames combined? Do the numbers make sense? If the answer is
no, consider updating the nickname statistics with the RUNSTATS utility.

Why isn’t the GROUP BY operator being evaluated remotely?
Areas to examine include:
v Operator syntax. Verify that the operator can be evaluated at the remote

data source.
v Number of rows. Check the estimated number of rows in the GROUP BY

operator input and output using Visual Explain. Are these two numbers
very close? If the answer is yes, the optimizer considers it more efficient to
evaluate this GROUP BY locally. Also, do these two numbers make sense? If
the answer is no, consider updating the nickname statistics using
RUNSTATS.

Why is the statement not being completely evaluated remotely?
The optimizer performs cost-based optimization. Even if pushdown analysis
indicates that every operator can be evaluated at the remote data source, the
optimizer still relies on its cost estimate to generate a globally optimal plan.
There are a great many factors that can contribute to that plan. Suppose that
the remote data source can process every operation in the original query.
However, its CPU speed is much slower than the CPU speed of the federated
server. It may turn out to be more beneficial to perform the operations at the
DB2® federated server instead. If results are not satisfactory, verify the server
statistics in the SYSSTAT.SERVEROPTIONS catalog table.

Why does a plan generated by the optimizer and completely evaluated
remotely, have much worse performance than the original query executed
directly at the remote data source?
Areas to examine include:
v The remote SQL statement generated by the DB2 query optimizer. Ensure

that it is identical to the original query. Check for predicate ordering
changes. A good query optimizer should not be sensitive to the predicate
ordering of a query. Unfortunately, not all DBMS optimizers are identical. It

Chapter 14. Tuning and performance issues with a federated system 253

is likely that the optimizer at the remote data source may generate a
different plan based on the input predicate ordering. If this is true, this is a
problem inherent in the remote optimizer. Consider either modifying the
predicate ordering on the input to DB2 or contacting the service
organization of the remote data source for assistance.
Also, check for predicate replacements. A good query optimizer should not
be sensitive to equivalent predicate replacements. It is possible that the
optimizer at the remote data source may generate a different plan based on
the input predicate. For example, some optimizers cannot generate
transitive closure statements for predicates.

v The number of returned rows. You can get this number from Visual
Explain. If the query returns a large number of rows, network traffic is a
potential bottleneck.

v Additional functions. Does the remote SQL statement contain additional
functions than the original query? Some of the extra functions may be
generated to convert data types. Ensure that they are necessary.

Related concepts:

v “Pushdown analysis” on page 233
v “Understanding access plan evalutation decisions” on page 242
v “Analyzing global optimization” on page 252

Related tasks:

v “Global optimization” on page 246

254 DB2 Federated Systems Guide

Chapter 15. Application programming issues for federated
systems

Although developing applications for a federated system is similar to the way
you develop applications for any other DB2 database, there are some unique
aspects when working with nicknames. This chapter discusses issues that
programmers need to consider when developing applications for federated
systems. For detailed information on application programming, see:
v IBM DB2 Universal Database Application Development Guide: Building and

Running Applications Version 8

v IBM DB2 Universal Database Application Development Guide: Programming
Client Applications Version 8

the

How client applications interact with data sources

To client applications, the data sources in a federated system appear as a
single collective database. To obtain data from data sources, applications
submit queries in DB2® SQL to the federated database. DB2 then distributes
the queries to the appropriate data sources, and either returns this data to the
applications or performs the requested action. The federated database can join
data from local tables and remote data sources, as if all the data is local. For
example, you can join data that is located in a local DB2 for Windows® table,
an Informix™ table, and a Sybase view in a single SQL statement. By
processing SQL statements as if the data sources were ordinary relational
tables or views within the federated database, the federated system can join
relational data with data in non-relational formats.

In a federated system, you access data sources through nicknames. A nickname
is an identifier that an application uses to reference a data source object, such
as a table or view. To write to a data source—for example, to update a data
source table—an application can use DB2 SQL (with nicknames). Alternatively,
applications can use the SQL dialect of the data source (without nicknames) in
a special session called pass-through to access the data sources directly.

Applications that use DB2 SQL and nicknames, can access any data types that
DB2 recognizes, except for BIGINT.

© Copyright IBM Corp. 1998 - 2002 255

The federated database system catalog contains information about the objects
in the federated database and information about objects at the data sources.
Since the catalog contains information about the entire federated system, it is
called a global catalog.

Related concepts:

v “Using pass-through to query data sources directly” on page 277

Related tasks:

v “Referencing data source objects by nicknames in SQL statements” on page
256

v “Performing operations on data source objects” on page 257
v “Cataloging information about data source objects” on page 258
v “Invoking stored procedure nicknames” on page 260
v “Defining column options on nicknames” on page 260
v “Accessing data sources using PASSTHRU” on page 181

Working with nicknames in your applications

When you create a nickname for a data source object, DB2 interprets and
interacts with that object as if it were a DB2 table. When writing applications
for federated systems, you need to understand:
v How to reference data source objects by nickname
v How to perform operations on nicknamed objects
v How to supply the global catalog with information about the nicknamed

objects
v How to invoke stored procedures through nicknames
v How to define column options on nicknames
v How to use views referenced by nicknames

Referencing data source objects by nicknames in SQL statements

With a federated system, you do not need to identify the data source server,
schema, and object in your SQL statements. Instead, use the nicknames
defined for data source objects in your SQL statements to query data source
objects.

Prerequisites:

Data source objects must have nicknames registered in the federated database
before you can include them in your queries.

Using nicknames in SELECT, INSERT, UPDATE, and DELETE statements:

256 DB2 Federated Systems Guide

Suppose that you define the nickname NFXDEPT to represent a table in an
Informix database called NFX1.PERSON.DEPT, where:
v NFX1 is the name assigned to the server in the server definition.
v PERSON is the data source schema.
v DEPT is the data source table name.

The statement SELECT * FROM NFXDEPT is allowed from the federated
server. However, the statement SELECT * FROM NFX1.PERSON.DEPT is not
allowed (except in a pass-through session). The federated server does not
have NFX1.PERSON.DEPT registered as a nickname.

Using nicknames in the CREATE TABLE statement:

Suppose you create a local summary table and reference a nickname in the
summary_table_definition clause of the CREATE TABLE statement. You must
also specify the DEFINITION ONLY keywords in this clause. For example, the
CREATE TABLE statement would be:
CREATE TABLE table_name LIKE nickname DEFINITION ONLY

For a complete list of the SQL statements that you can use with a federated
system, see Quick Reference - federated SQL statements.

Related concepts:

v “Using pass-through to query data sources directly” on page 277

Related tasks:

v “Pass-though considerations and restrictions” on page 278
v “Using pass-through with Oracle data sources” on page 278

Performing operations on data source objects

There are other SQL statements that may require you to use nicknames in the
syntax.

Prerequisites:

Data source objects must have nicknames registered in the federated database
before you can include them in your SQL statements.

Using nicknames in the COMMENT ON statement:

The COMMENT ON statement adds or replaces comments in the federated
database global catalog. The COMMENT ON statement is valid against a
nickname and columns that are defined on a nickname. This statement does
not update data source catalogs.

Chapter 15. Application programming issues for federated systems 257

Using nicknames in the GRANT and REVOKE statements:

The GRANT and REVOKE statements are valid against a nickname for certain
privileges and for all users and groups. However, DB2 does not issue a
corresponding GRANT or REVOKE against the object on the data source that
the nickname references.

For example, suppose that user JON creates a nickname for an Oracle table
that had no index. The nickname is ORAREM1. Later, the Oracle DBA defines
an index for this table. User EILEEN now wants the DB2 federated database
to know that this index exists, so that the query optimizer can devise
strategies to access the table more efficiently. EILEEN can inform the federated
database that a new index exists, by creating an index specification for
ORAREM1.

The information about the index is stored in the SYSSTAT.INDEXES catalog
view. Use the GRANT statement to give EILEEN the index privilege on this
nickname, so that she can create the index specification.
GRANT INDEX ON NICKNAME ORAREM1 TO USER EILEEN

To revoke user EILEEN’s privileges to create an index specification on
nickname ORAREM1, use the REVOKE statement:
REVOKE INDEX ON ORAREM1 FROM USER EILEEN

Related concepts:

v “Create nicknames for each data source object” on page 96

Related tasks:

v “Creating index specifications for data source objects” on page 216

Related reference:

v “COMMENT statement” in the SQL Reference, Volume 2

v “GRANT (Table, View, or Nickname Privileges) statement” in the SQL
Reference, Volume 2

v “REVOKE (Table, View, or Nickname Privileges) statement” in the SQL
Reference, Volume 2

Cataloging information about data source objects

When a nickname is created for a data source object, the federated database
global catalog is updated with information about that object. DB2 query
optimize uses this information to plan how to retrieve data from the object. It
is important to make sure that the data source information is current. The
federated database does not automatically detect changes to data source
objects.

258 DB2 Federated Systems Guide

Updating catalog statistics:

The information stored in the global catalog about a data source object,
depends on the type of object. For database tables and views, the name of the
object, the column names and attributes, are stored in the global catalog.

In the case of a table, the information also includes:
v Statistics. For example, the number of rows and the number of pages on

which the rows exist. Ensure that DB2 obtains the latest statistics. Run the
data source equivalent of the RUNSTATS command against the table before
you create the nickname.

v Index descriptions. If the table has no indexes, you can supply the catalog
with metadata that an index definition typically contains. For example, you
can inform the catalog which column or columns in the table have unique
values, and whether any rows are unique. You can generate this metadata,
which is collectively called an index specification, by issuing the CREATE
INDEX statement against the nickname for the table. The CREATE INDEX
statement produces only an index specification; it does not create an actual
index.

To determine what data source information that is stored in the global catalog,
query the SYSCAT.TABLES and SYSCAT.COLUMNS catalog views . To
determine what data source index information stored in the catalog, or what a
particular index specification contains, query the SYSCAT.INDEXES catalog
view.

Change applications to reference the SYSSTAT view instead of the SYSCAT
view:

As noted in the DB2 for UNIX and Windows Version 6 and Version 7 SQL
Reference manuals, the DB2 Version 8 SYSCAT views are now read-only. If
you issue an UPDATE or INSERT operation on a view in the SYSCAT schema,
it will fail. Using the SYSSTAT views is the recommended way to update the
system catalog. Change applications that reference the SYSCAT view to
reference the updatable SYSSTAT view instead.

Related concepts:

v “Catalog statistics” in the Administration Guide: Performance

v “Catalog statistics tables” in the Administration Guide: Performance

v “The federated database” on page 7

Related tasks:

v “Creating index specifications for data source objects” on page 216
v “Nickname characteristics affecting global optimization” on page 249

Chapter 15. Application programming issues for federated systems 259

Related reference:

v “SYSCAT.COLUMNS catalog view” in the SQL Reference, Volume 1

v “SYSCAT.INDEXES catalog view” in the SQL Reference, Volume 1

v “SYSCAT.TABLES catalog view” in the SQL Reference, Volume 1

v Appendix A, “Views in the global catalog table containing federated
information” on page 281

Invoking stored procedure nicknames

If you are migrating applications from DataJoiner which invoke stored
procedures through nicknames, you will have to modify your applications.
DB2 for UNIX and Windows does not currently support this feature. The
ability to invoke a stored procedure nickname will be added in a future
release.

Defining column options on nicknames

Setting column options might improve the performance of your applications.
Column options are parameters in the CREATE NICKNAME and ALTER
NICKNAME statements. You can specify column options when you initially
create a nickname or by modifying an existing nickname.

The information you provide through the column options is stored in the
global catalog.

There are two column options you can set:
v numeric_string

v varchar_no_trailing_blanks

Numeric_string column option
By default, the query optimizer assumes that numeric string columns contain
trailing blanks. If a data source numeric string column contains only numeric
digits, and no other characters, including blanks, then set the numeric_string
column option to ’Y’. This will allow queries against this column to be
optimized on sorting operations and comparison operations. For example:
ALTER NICKNAME nickname OPTIONS (SET numeric_string ’Y’)

Varchar_no_trailing_blanks column option
By default, the query optimizer assumes that Oracle columns using the
VARCHAR data type contain trailing blanks. On this assumption, it develops
an access strategy that involves modifying queries so that the values returned
from these columns are the ones that the user expects. If a VARCHAR column
has no trailing blanks, set the varchar_no_trailing_blanks column option to ’Y’.
The optimizer can develop a more efficient access strategy for queries which
include the VARCHAR data type.

260 DB2 Federated Systems Guide

For example:
ALTER NICKNAME nickname OPTIONS (SET varchar_no_trailing_blanks ’Y’)

Related reference:

v Appendix E, “Column options for federated systems” on page 299

Creating and using federated views

A view in the federated database whose base tables are located at remote data
sources is called a federated view. The base tables are referenced in the
federated view by nicknames, instead of by the data source table names.

The advantages of using federated views are similar to the advantages of
using views defined on multiple local tables in a centralized relational
database manager:
v Views provide an integrated representation of the data.
v You can exclude table columns which contain confidential or sensitive data

from a view.

Restrictions:

Federated views that are created from multiple nicknamed data source objects
are read-only views and cannot be updated.

Federated views that are created from only one nicknamed data source object
may or may not be read-only views.
v A federated view created from a single non-relational data source is

read-only.
v A federated view created from a single relational data source might allow

updates, depending on what is included in the CREATE FEDERATED
VIEW statement.

Procedure:

You create a federated view of data source objects that have nicknames. The
action of creating a federated database view of data source data is sometimes
called “creating a view on a nickname”. This phrase reflects the fact that for
the federated view to be created, the CREATE VIEW statement fullselect must
reference the nickname of each data source table and view that the federated
view is to contain.

Creating a federated view which merges similar data from several data
tables:

Chapter 15. Application programming issues for federated systems 261

Suppose you have customer data on three separate servers, one in Europe,
one in Asia, and one in South America. The Europe customer data is in a
Oracle table. The nickname for that table is ORA_EU_CUST. The Asia
customer data is in a Sybase table. The nickname for that table is
SYB_AS_CUST. The South America customer data resides in an Informix table.
The nickname for that table is INFMX_SA_CUST. Each table has columns
containing the customer number (CUST_NO), the customer name
(CUST_NAME), the product number (PROD_NO), and the quantity ordered
(QUANTITY). The syntax to create a view from these three nicknames that
merges this customer data is:
CREATE FEDERATED VIEW FV1
AS SELECT * FROM ORA_EU_CUST
UNION
SELECT * FROM SYB_AS_CUST
UNION
SELECT * FROM INFMX_SA_CUST

Joining data to create a federated view:

Suppose you have customer data on one server and sales data on another
server. The customer data is in a Oracle table. The nickname for that table is
ORA_EU_CUST. The sales data is in a Sybase table. The nickname for that
table is SYB_SALES. You want to match up the customer information with the
purchases those customers have made. Each table has a column containing the
customer number (CUST_NO). The syntax to create a view from these two
nicknames that joins this data is:
CREATE FEDERATED VIEW FV4
AS SELECT A.CUST_NO, A.CUST_NAME, B.PROD_NO, B.QUANTITY
FROM ORA_EU_CUST A, SYB_SALES B
WHERE A.CUST_NO=B.CUST_NO

When the view is created, the person defining the view must have SELECT
priviledge on the nicknames. Authorization requirements of the data source
for the table or view referenced by the nickname are applied when the query
is processed. The authorization ID of the statement may be mapped to a
different remote authorization ID through a user mapping.

The presence of a nickname in the the CREATE FEDERATED VIEW statement
changes the authorization model used for the view when the view is created
and when the view is subsequently referenced in a query.

When a federated view is referenced in a query, the nicknames used to create
the view are queried. This means that the underlying data sources are
queried. The authorization ID that issues the query (or the remote
authorization ID to which it maps) must have the necessary privileges to
access the data source table or view.

262 DB2 Federated Systems Guide

Related tasks:

v “Accessing heterogeneous data through federated views” on page 182

Related reference:

v “CREATE VIEW statement” in the SQL Reference, Volume 2

Using isolation levels to maintain data integrity

An isolation level associated with an application process defines the degree of
isolation of that application process from other concurrently executing
application processes. The isolation level is specified as an attribute of a
package that applies to a the application processes that use the package.
Isolation levels are used when you prep or bind an application.

Locking occurs at the base table row. The database manager, however, can
replace multiple row locks with a single table lock. This is called lock
escalation. An application process is guaranteed that at least the minimum
requested lock level.

You can maintain data integrity for a data source table by requesting that the
table rows be locked at a specific isolation level. For example, to ensure that
you have sole access to a row, you would specify the repeatable read (RR)
isolation level for that row. The federated server maps the isolation level you
request to a corresponding one at the data source. The isolation levels are:

CS Cursor stability

RR Repeatable read

RS Read stability

UR Uncommitted read

Procedure:

The following table lists the isolation levels that you can request on the
supported data sources.

Table 36. Comparable isolation levels between the federated server and supported data
sources.

DB2
federated
server

CS RR RS UR

Informix Default Transaction read-only Transaction read-only Same as
cursor
stability

Chapter 15. Application programming issues for federated systems 263

Table 36. Comparable isolation levels between the federated server and supported data
sources. (continued)

Oracle Default Transaction read-only Transaction read-only Same as
cursor
stability

Sybase Default Transaction read-only Transaction read-only Same as
cursor
stability

Microsoft
SQL
Server

Default Transaction read-only Transaction read-only Same as
cursor
stability

ODBC Default Transaction read-only Transaction read-only Same as
cursor
stability

OLE DB Default Transaction read-only Transaction read-only Same as
cursor
stability

Related concepts:

v “Isolation levels” in the SQL Reference, Volume 1

v “Applications in Host or iSeries Environments” in the Application
Development Guide: Programming Client Applications

v “How client applications interact with data sources” on page 255

Overriding the default data type mappings

When a nickname is created for a data source object, DB2® populates the
global catalog with information about the table.

Data source data types are referred to as remote data types, and federated
database data types are referred to aslocal data types.

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type. The other type of mapping is a reverse type mapping,
which are used infrequently. In a reverse type mapping, the mapping is from
a local type to a comparable remote type.

DB2 uses data type mappings to determine what DB2-supported data type
should be defined for the column of a data source object. Default data type
mappings are built into the data source wrappers.

264 DB2 Federated Systems Guide

Your applications might require data type mappings that are different than the
default mappings. You can override the default mappings using the CREATE
TYPE MAPPING statement.

Restrictions:

DB2 federated servers do not support mappings for these local data types:
LONG VARCHAR, LONG VARGRAPHIC, DATALINK, and user-defined
types.

Procedure:

Use the CREATE TYPE MAPPING statement to define new forward data type
mappings. For example:
CREATE TYPE MAPPING type_mapping_name FROM SERVER remote_server_name
TO LOCAL TYPE local_data_type REMOTE TYPE data_source_data_type

Note: This syntax is new for the CREATE TYPE MAPPING statement in DB2
for UNIX® and Windows, Version 8.

Mappings you create are stored in the federated database global catalog
SYSSTAT.TYPEMAPPING view.

See Default forward data type mappings for a list of the built-in mappings.

Related tasks:

v “Modifying default data type mappings” on page 208

Related reference:

v “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2

v Appendix H, “Default forward data type mappings” on page 307

Federated LOB support

With a federated database system, you can access and manipulate large
objects (LOBs) at remote data sources. Because LOBs can be very large,
transferring LOBs from a remote data source can be time-consuming. The
DB2® federated database attempts to minimize transferring LOB data from the
data sources, and also attempts to deliver requested LOB data directly from
the data source to the requesting application without materializing the LOB at
DB2.

DB2 Federated System supports select operations on LOBs at Informix,
Microsoft® SQL Server, and Sybase data sources. For example:

Chapter 15. Application programming issues for federated systems 265

SELECT empname, picture FROM nfmx_emp_table WHERE empno = ’01192345’

where picture represents a LOB column and nfmx_emp_table represents a
nickname referencing an Informix™ table containing employee data.

DB2 Federated System supports select, insert, update, and delete operations
on LOBs at Oracle data sources (Version 7.3 or higher).

DB2 for UNIX® and Windows® Version 8 supports the follow read and write
operations:

Table 37. Read and write support for LOBs

Data source Type of operations

DB2 family read only

Informix read only

Microsoft SQL Server read only

Oracle (NET8 wrapper) read and write

Oracle (SQLNET wrapper) read only

ODBC read only

Sybase read only

Related concepts:

v “How applications can use LOB locators” on page 266
v “Restrictions on LOBs” on page 267
v “Mappings between LOB and non-LOB data types” on page 267

Federated LOB support—details

How applications can use LOB locators

Applications can request LOB locators for LOBs that are stored in remote data
sources. A LOB locator is a 4-byte value stored in a host variable. An
application can use the LOB locator to refer to a LOB value (or LOB
expression) held in the database system. Using a LOB locator, an application
can manipulate the LOB value as if the LOB value was stored in a regular
host variable. When you use LOB locators, there is no need to transport the
LOB value from the data source server to the application (and possibly back
again).

DB2® can retrieve LOBs from remote data sources, store them at the federated
server, and then issue a LOB locator against the stored LOB. LOB locators are
released when:

266 DB2 Federated Systems Guide

v Applications issue ″FREE LOCATOR″ SQL statements.
v Applications issue COMMIT statements.
v The DB2 federated instance is restarted.

Related concepts:

v “Large Object Locators” in the Application Development Guide: Programming
Server Applications

v “Federated LOB support” on page 265
v “Restrictions on LOBs” on page 267
v “Mappings between LOB and non-LOB data types” on page 267

Restrictions on LOBs

The federated database is unable to bind remote LOBs to a file reference
variable.

LOBs are not supported in pass-through sessions.

Related concepts:

v “Federated LOB support” on page 265
v “How applications can use LOB locators” on page 266
v “Mappings between LOB and non-LOB data types” on page 267

Mappings between LOB and non-LOB data types

There are a few situations in which you need to map a DB2® LOB data type
to a non-LOB data type at a data source.

Procedure:

When you need to create a mapping between a column at a data source and
its DB2 LOB type counterpart, use the CREATE TYPE MAPPING statement.
For example suppose that you need to create a mapping for the Oracle LONG
data type to the DB2 CLOB data type, for every Oracle data source object
identified in your federated database. You would create a type mapping such
as:
CREATE TYPE MAPPING my_oracle_lob FROM sysibm.clob TO SERVER
TYPE oracle TYPE LONG

where:

my_oracle_lob
Is the name of the type mapping.

sysibm.clob
Is the DB2 CLOB data type you are mapping to.

Chapter 15. Application programming issues for federated systems 267

SERVER TYPE oracle
Is the type of server you are connecting to.

TYPE LONG
Is the Oracle data type counterpart.

Note: This syntax is new for the CREATE TYPE MAPPING statement in DB2
for UNIX® and Windows, Version 8.

Mappings you create are stored in the federated database global catalog
SYSSTAT.TYPEMAPPING view.

Related concepts:

v “Federated LOB support” on page 265
v “How applications can use LOB locators” on page 266
v “Restrictions on LOBs” on page 267

Related reference:

v “CREATE TYPE MAPPING statement” in the SQL Reference, Volume 2

Using distributed requests to query data sources

Queries submitted to the federated database can request results from a single
data source; but typically they request results that are from multiple data
sources. Because a typical query is distributed to multiple data sources, it is
called a distributed request. In general, a distributed request uses one or more
of three SQL conventions to specify where data is to be retrieved from:
subqueries, set operators, and join subselects.

Suppose that you have a federated server configured to access a DB2 for
OS/390 data source, a DB2 for iSeries data source, and an Oracle data source.
Stored in each data source is a table that contains employee information. The
federated server references these tables by nicknames that point to where the
tables reside.

UDB390_EMPLOYEES
Nickname for a table on a DB2 for OS/390 data source that contains
employee information.

iSERIES_EMPLOYEES
Nickname for a table on a DB2 for iSeries data source that contains
employee information.

ORA_EMPLOYEES
Nickname for a table on an Oracle data source that contains employee
information.

268 DB2 Federated Systems Guide

ORA_REGIONS
Nickname for a table on an Oracle data source that contains
information about the regions that the employees live in.

The following examples illustrate the three SQL conventions used with
distributed requests, using the nicknames defined for each of the tables.

Example: A distributed request with a subquery:

iSERIES_EMPLOYEES contains the phone numbers of employees who live in
Asia. It also contains the region codes associated with these phone numbers,
but it does not list the regions that the codes represent. ORA_REGIONS lists
both codes and regions. The following query uses a subquery to find the
region code for China. Then it uses the region code to return a list of those
employees in iSERIES_EMPLOYEES who have a phone number in China.
SELECT name, telephone FROM db2admin.iSERIES_employees
WHERE region_code IN (SELECT region_code FROM dbadmin.ora_regions
WHERE region_name = ’CHINA’)

Example: A distributed request with set operators:

The federated server supports three set operators: UNION, EXCEPT, and
INTERSECT.
v Use the UNION set operator to combine the rows that satisfy any of two or

more SELECT statements.
v Use the EXCEPT set operator to retrieve those rows that satisfy the first

SELECT statement but not the second.
v Use the INTERSECT set operator to retrieve those rows that satisfy both

SELECT statements.

All three set operators can use the ALL operand to indicate that duplicate
rows are not be removed from the result. This eliminates the need for an extra
sort.

The following query retrieves all employee names and region codes that are
present in both iSERIES_EMPLOYEES and UDB390_EMPLOYEES, even
though each table resides in a different data source.

SELECT name, region_code
FROM as400_employees

INTERSECT
SELECT name, region_code

FROM udb390_employees

Example: A distributed request for a join:

Chapter 15. Application programming issues for federated systems 269

A relational join produces a result set that contains a combination of columns
retrieved from two or more tables. You should specify conditions to limit the
size of the rows in the result set.

The query below combines employee names and their corresponding region
names by comparing the region codes listed in two tables. Each table resides
in a different data source.
SELECT t1.name, t2.region_name
FROM dbadmin.iSERIES_employees.t1, dbadmin.ora_regions.t2
WHERE t1.region_code = t2.region_code

Using server options to optimize distributed requests

In a federated system, use parameters called server options to supply the global
catalog with information that applies to a data source as a whole, or to control
how DB2 interacts with a data source. For example, you can:
v Catalog the instance identifier by assigning the identifier as a value to the

node server option.
v Use the varchar_no_trailing_blanks server option to inform the optimizer

that every VARCHAR column residing on the data source server is free of
trailing blanks.

v Set the plan_hints server option to a value that enables DB2 to provide
Oracle data sources with statement fragments, called plan hints, that help
Oracle optimizers do their job. Specifically, plan hints can help an optimizer
to decide which index to use in accessing a table, and which table join
sequence to use in retrieving data for a result set.

Typically, the database administrator sets server options for a federated
system. However, a programmer can make good use of the options that help
to optimize queries. For example, suppose that for data sources ORACLE1
and ORACLE2, the plan_hints server option is set to its default, ‘n’ (no, do
not furnish this data source with plan hints). Also suppose that you write a
distributed request for data from ORACLE1 and ORACLE2. You expect that
plan hints would help the optimizers at these data sources improve their
strategies for accessing this data. You could override the default with a setting
of ‘y’ (yes, furnish the plan hints) while your application is connected to the
federated database. When the connection is terminated, the setting would
automatically revert to ‘n’.

Use the SET SERVER OPTION statement to set or change server options. To
ensure that the setting takes effect, specify the SET SERVER OPTION
statement immediately following the CONNECT statement. The server option
is set for the duration of a connection to the federated database. In addition, it
is advisable to prepare the statement dynamically.

270 DB2 Federated Systems Guide

Related reference:

v “SET SERVER OPTION statement” in the SQL Reference, Volume 2

v Appendix C, “Server options for federated systems” on page 287

Invoking user-defined functions in applications

Application developers often need to create their own suite of functions
specific to their application or domain. They can use user-defined scalar
functions for this purpose.

For example, a retail store could define a PRICE data type for tracking the
cost of items that it sells. This store might also want to define a SALES_TAX
function. This function would take a given price value as input, compute the
applicable sales tax, and return this data to the requesting user or application.

These functions can operate over all database types, including large object
types and distinct types. UDFs allow queries to contain powerful computation
and search predicates to filter irrelevant data close to the source of the data,
thereby reducing response time. The SQL optimizer treats UDFs exactly like
built-in functions such as SUBSTR and LENGTH. Applications can be
developed using different application language environments, such as C, C++,
COBOL, and FORTRAN, while sharing a set of SQL UDFs.

UDFs can not only manipulate data but also perform actions. For example,
you might enable a UDF to send an electronic message or to update a flat file.

In DB2, UDFs can include:
v Functions that you define from scratch.
v Functions in the SYSFUN schema. Examples include mathematical functions

such as SIN, COS, and TAN; scientific functions such as RADIANS, LOG10,
and POWER; and general purpose functions such as LEFT, DIFFERENCE,
and UCASE.

Related concepts:

v “User-defined functions” in the SQL Reference, Volume 1

Invoking user-defined functions in applications—details

Enabling the federated database to access functions at data source

You can use a federated database in connection with UDFs when:
v You want to directly invoke an UDF at a data source. You can do this in a

pass-through session.

Chapter 15. Application programming issues for federated systems 271

v You want a federated database to access a remote function—a UDF at a data
source or a built-in function that resides at a data source.

Before you can use a federated database to invoke a remote function,
federated database must associate the function with a function specification
stored in the global catalog. The signature in this specification must
correspond to the signature of the function that you want to invoke. A
signature is the combination of a function’s name and input parameters.
Signatures correspond if:
v They contain the same names and the same number of parameters, and
v If the data type of each parameter in one signature is the same as (or can be

converted to) the data type of the corresponding parameter in the other
signature.

There are two conditions under which the federated database can associate a
function specification at its database with a remote function:
v If the federated database contains a function whose signature corresponds

to that of the signature of the remote function.
v If the federated database doesn’t contain a function with the requisite

signature, you can define to the database a function template that contains
this signature. Then you map the function template to the function that you
want to invoke.

To define a function template to the federated database, use the CREATE
FUNCTION statement. To map a function or a function template at the
federated database to a remote function, use the CREATE FUNCTION
MAPPING statement. The settings for function mappings are stored in the
SYSCAT.FUNCMAPPINGS catalog view.

DB2 can invoke a data source function that it does not recognize, if you create
a mapping between the data source function and a DB2 function that is stored
in the federated database. Examples of functions that DB2 does not recognize
are:
v A user-defined function.
v A new built-in function that was added to the data source after the

nickname was created for the data source.

.

The DB2 function can be an existing function or function template, or a new
function or function template that you create. To create a mapping between
functions, the data source function and the DB2 function it is mapped to
should have:
v the same number of input parameters

272 DB2 Federated Systems Guide

v compatible data types

Suppose you want to map a user-defined function named US_DOLLAR at an
Oracle data source called ORACLE2, to a DB2 user-defined function that you
create. You decide to name the DB2 user-defined function DOLLAR and to
name this function mapping ORACLE_DOLLAR. The two SQL statements
would be:
CREATE FUNCTION DOLLAR () RETURNS DECIMAL(9,2)
CREATE FUNCTION MAPPING ORACLE_DOLLAR FOR DOLLAR SERVER ORACLE2
OPTIONS (REMOTE_NAME ’US_DOLLAR’)

After the mapping is created, you submit distributed requests that reference
the DB2 function. For example, if you mapped a DB2 user-defined function
called DOLLAR to an Oracle user-defined function called US_DOLLAR, your
request would specify DOLLAR rather than US_DOLLAR.

Related concepts:

v “Function mappings and function templates” on page 20
v “Invoking user-defined functions in applications” on page 271

Related tasks:

v “Creating and modifying function mappings” on page 223
v “Specifying function overhead through mapping options” on page 273
v “Specifying function names in a function mapping” on page 275
v “Discontinuing function mappings” on page 275

Related reference:

v “CREATE FUNCTION statement” in the SQL Reference, Volume 2

v “CREATE FUNCTION MAPPING statement” in the SQL Reference, Volume 2

v “CREATE FUNCTION (Sourced or Template) statement” in the SQL
Reference, Volume 2

v Appendix F, “Function mapping options for federated systems” on page 301

Specifying function overhead through mapping options

When you create a function mapping, you can provide DB2 with important
information about the potential cost, or overhead, of executing a data source
function at the data source. This information helps the DB2 query optimizer
determine the best strategy for executing the query. When a distributed
request is processed, the optimizer evaluates multiple access strategies and
estimates the overhead to invoke the DB2 function and the data source
function. Which ever strategy that is expected to cost the least amount of
overhead is the one that is used.

Chapter 15. Application programming issues for federated systems 273

You include estimated statistics on the overhead that would be consumed
when the data source function is invoked in the CREATE FUNCTION
MAPPING statement . For example, the statement can specify the estimated
number of instructions that would be required to invoke the data source
function. It can specify the estimated number of I/Os that would be expended
for each byte of the argument set that is passed to this function. These
estimates are stored in the global catalog, and appear in the
SYSCAT.FUNCMAPOPTIONS view. When a DB2 function is used in the
mapping — instead of a data source function or a DB2 function template —
the global catalog contains estimates of overhead that would be consumed
when the DB2 function is invoked. You can see these estimates in the
SYSCAT.FUNCTIONS view.

To specify estimated statistics in the CREATE FUNCTION MAPPING
statement, use the function mapping options. describes the options you can
set for data source functions and their default values.

Table 38. Function mapping options and their settings

Option Valid settings Default
setting

disable Disable a default mapping. Valid values are ’Y’ and
’N’.

initial_insts Estimated number of instructions processed the first
and last time that the data source function is
invoked.

‘0’

initial_ios Estimated number of I/Os performed the first and
last time that the data source function is invoked.

‘0’

insts_per_argbyte Estimated number of instructions processed for each
byte of the argument set that is passed to the data
source function.

‘0’

insts_per_invoc Estimated number of instructions processed per
invocation of the data source function.

‘450’

ios_per_argbyte Estimated number of I/Os expended for each byte of
the argument set that is passed to the data source
function.

‘0’

ios_per_invoc Estimated number of I/Os per invocation of a data
source function.

‘0’

percent_argbytes Estimated average percent of input argument bytes
that the data source function will actually read.

‘100’

remote_name Name of the data source function local
name

274 DB2 Federated Systems Guide

If the estimates of consumed overhead change, you can record the change in
the global catalog. To record new estimates for the data source function, first
drop or disable the function mapping. Then recreate the mapping with the
CREATE FUNCTION MAPPING statement, specifying the new estimates in
the statement. When you run the statement, the new estimates will be added
to the SYSCAT.FUNCTIONS catalog view. To record changed estimates for the
DB2 function, update the SYSSTAT.FUNCTIONS catalog view directly.

Specifying function names in a function mapping

How you code the CREATE FUNCTION MAPPING statement depends on
part on whether the names of the objects that you are mapping together are
the same or different. If you are creating a mapping between two functions
(or a function template and a function) that have the same name, you must
assign this name to the function_name parameter.

But if the names differ, then:
v Assign the name of the federated database function or function template to

the function_name parameter.
v Specify a function mapping option called “remote_name” and assign the

name of the data source function to this option. The name must have fewer
than 255 characters.

Suppose you want to map a user-defined function named UPPERCASE at an
Oracle data source called ORACLE2 to the DB2 function UCASE(CHAR). You
also want to include the estimated number of instructions per invocation of
the UPPERCASE function. You decide to name this function mapping
ORACLE_UPPER. The syntax would be:
CREATE FUNCTION MAPPING ORACLE_UPPER FOR SYSFUN.UCASE(CHAR)
SERVER ORACLE2 OPTIONS
(REMOTE_NAME ’UPPERCASE’, INSTS_PER_INVOC ’1000’)

Discontinuing function mappings

If you want to discontinue using a function mapping, follow these guidelines:
v User-defined function mappings are listed in the SYSCAT.FUNCMAPPINGS

catalog view. To discontinue a user-defined function mapping, you have to
delete the mapping. You do this with the DROP FUNCTION MAPPING
statement.

v Default mappings are not listed in the SYSCAT.FUNCMAPPINGS catalog
view. To discontinue a default function mapping, you disable the mapping.
You do this in the CREATE FUNCTION MAPPING statement by setting the
“disable” option to ‘y’ (yes, disable this function mapping). The default is
‘n’.

Related concepts:

Chapter 15. Application programming issues for federated systems 275

v “Define alternative function mappings to the federated database” on page
103

Related tasks:

v “Creating and modifying function mappings” on page 223
v “Enabling the federated database to access functions at data source” on

page 271
v “Specifying function overhead through mapping options” on page 273
v “Specifying function names in a function mapping” on page 275

Related reference:

v “DROP statement” in the SQL Reference, Volume 2

v “CREATE FUNCTION MAPPING statement” in the SQL Reference, Volume 2

v Appendix A, “Views in the global catalog table containing federated
information” on page 281

Enabling the federated database to recognize data source user-defined data
types (UDTs)

A UDT is a distinct user-defined data type that shares its internal
representation with an existing type, but is considered to be a separate and
incompatible type for semantic purposes. For example, a user might want to
define a PICTURE type, a TEXT type, and an AUDIO type, all of which have
quite different semantics, but which all use the predefined data type binary
large object (BLOB) for their internal representation.

One of the benefits of UDTs is strong typing. Strong typing guarantees that
only functions and operations defined on the distinct type can be applied to
the type. For example, the system does not allow you to directly compare a
PICTURE type with an AUDIO type even though they share the same
underlying type. If you did want to make such a comparison, you need to
first convert values of one type to values of the other.

User-defined types, like built-in types, can be used for columns of tables as
well as parameters of functions. For example, a user can define a data type
such as ANGLE (which varies between 1 and 360) and a set of UDFs to act on
it, such as SINE, COSINE and TANGENT.

In some cases, the definition of a table, view, or function at a data source
might include a UDT that DB2 does not recognize. So that DB2 can recognize
the UDT (and consequently access the table, view, or function), you must map
the UDT to a corresponding one at the federated database. If the federated

276 DB2 Federated Systems Guide

database does not contain a corresponding UDT, you can create one with the
DB2 CREATE DISTINCT TYPE statement. To create the mapping, use the DB2
CREATE TYPE MAPPING statement.

Using pass-though sessions within applications

Pass-through sessions let applications communicate directly with a server
using the server’s native client access method and native SQL dialect.

Using pass-through to query data sources directly

Pass-through sessions are useful when:
v Applications must create objects at the data source or perform INSERT,

UPDATE, or DELETE operations
v DB2® does not support a unique data source operation

When referencing objects in a pass-through session, use the true name of the
object, not the nickname.

Use the SET PASSTHRU statement to start a pass-through session and access
a server directly. This statement must be issued dynamically. An example of
this statement is:

SET PASSTHRU ORACLE1

which opens a pass-through session to the data source ORACLE1.

If a static statement is submitted in a pass-through session, it is sent to the
federated server for processing. If you want to submit an SQL statement to a
data source for processing, you must prepare it dynamically in the
pass-through session and have it executed while the session is still open.
v To submit a SELECT statement, use the PREPARE statement with it, and

then use the OPEN, FETCH, and CLOSE statements to access the results of
your query.

v For a supported statement other than SELECT, you have two options. You
can use the PREPARE statement to prepare the supported statement, and
then the EXECUTE statement to execute it. Alternatively, you can use the
EXECUTE IMMEDIATE statement to prepare and execute the statement.

If you issue the COMMIT or ROLLBACK command during a pass-through
session, this command will complete the current unit of work (UOW), but
does not end the pass-through session.

Chapter 15. Application programming issues for federated systems 277

Pass-though considerations and restrictions

There are a number of considerations and restrictions to keep in mind when
you use pass-through. Some of them are of a general nature; others apply
only to specific data sources. The following information applies to all data
sources:
v Statements prepared within a pass-through session must be executed within

the same pass-through session. Statements prepared within a pass-through
session, but executed outside of the same pass-through session, will fail and
result in a SQLSTATE 56098 error.

v An application can have several SET PASSTHRU statements to different
data sources. Although the application might issue multiple SET
PASSTHRU statements, only the last session is active. You cannot pass
through to more than one data source at a time. When a new SET
PASSTHRU statement is invoked, it terminates the previous SET
PASSTHRU statement.

v If multiple pass-through sessions are used in an application, be sure to
issue a COMMIT before you open another pass through session. This will
conclude the unit of work for the current session.

v Host variables defined in SQL statements within a pass-through session
must take the form :Hn where H is uppercase and n is a unique whole
number. The values of n must be numbered consecutively beginning with
zero.

v Pass-through does not support stored procedure calls.
v Pass-through does not support the SELECT INTO statement.

Related concepts:

v “Pass-through sessions” on page 11
v “Using pass-through to query data sources directly” on page 277

Related tasks:

v “Using pass-through with Oracle data sources” on page 278
v “Accessing data sources using PASSTHRU” on page 181

Related reference:

v “SET PASSTHRU statement” in the SQL Reference, Volume 2

Using pass-through with Oracle data sources
When a remote client issues a SELECT statement from a command line
processor (CLP) in pass-through mode and the client code is a SDK prior to
DB2 Universal Database Version 5, the SELECT will elicit an SQLCODE -30090
with reason code 11. To avoid this error, remote clients must use an SDK that
is at Version 5 or greater.

278 DB2 Federated Systems Guide

Any DDL statement issued against an Oracle server is performed at parse
time and is not subject to transaction semantics. The operation, when
complete, is automatically committed by Oracle. If a rollback occurs, the DDL
is not rolled back.

When you issue a SELECT statement from raw data types, use the
RAWTOHEX function to receive the hexadecimal values. When you perform
an INSERT into raw data types, provide the hexadecimal representation.

Chapter 15. Application programming issues for federated systems 279

280 DB2 Federated Systems Guide

Appendix A. Views in the global catalog table containing
federated information

Most of the catalog views in a federated database are the same as the catalog
views in any other DB2 for UNIX and Windows database. There are several
unique views which contain information pertinent to a federated system, such
as the SYSCAT.WRAPPERS view.

As noted in the DB2 for UNIX and Windows Version 6 and Version 7 SQL
Reference manuals, the DB2 Version 8 SYSCAT views are now read-only. If
you issue an UPDATE or INSERT operation on a view in the SYSCAT schema,
it will fail. Using the SYSSTAT views is the recommended way to update the
system catalog. Change applications that reference the SYSCAT view to
reference the updatable SYSSTAT view instead.

The following table lists the SYSCAT views which contain federated
information. These are read-only views.

Table 39. Catalog views typically used with a federated system

Catalog views Description

SYSCAT.COLUMNS Contains column information about the
data source objects (tables and views) that
you have created nicknames for.

SYSCAT.COLOPTIONS Contains information about column option
values that you have set for a nickname.

SYSCAT.DATATYPES Contains data type information about local
built-in and user-defined DB2 data types.

SYSCAT.DBAUTH Contains the database authorities held by
individual users and groups.

SYSCAT.FUNCMAPOPTIONS Contains information about option values
that you have set for a function mapping.

SYSCAT.FUNCMAPPINGS Contains the function mappings between
the federated database and the data source
objects.

SYSCAT.FUNCTIONS Contains local DB2 user-defined functions,
or function templates. Function templates
are used to map to a data source function.

SYSCAT.INDEXES Contains index specifications for data
source objects.

© Copyright IBM Corp. 1998 - 2002 281

Table 39. Catalog views typically used with a federated system (continued)

Catalog views Description

SYSCAT.REVTYPEMAPPINGS Contains reverse data type mappings. The
mapping is from local DB2 data types to
data source data types. These mappings
are only used with remote (transparent)
tables.

SYSCAT.SERVEROPTIONS Contains information about server option
values that you set with a server
definition.

SYSCAT.SERVERS Contains server definitions that you create
for data source servers.

SYSCAT.TABLES Contains information about each local DB2
table, federated view, and nickname that
you create.

SYSCAT.TYPEMAPPINGS Contains forward data type mappings.
The mapping is to local DB2 data types
from data source data types. These
mappings are used when you query a
data source using a DB2 SQL statement.

SYSCAT.USEROPTIONS Contains user authorization information
that you set when you create user
mappings between the federated database
and the data source servers.

SYSCAT.VIEWS Contains information about local federated
views that you create.

SYSCAT.WRAPOPTIONS Contains information about option values
that you have set for a wrapper.

SYSCAT.WRAPPERS Contains the name of the wrapper and
library file for each data source that you
create a wrapper for.

The following table lists the SYSSTAT views which contain federated
information. These are read-write views that contain statistics you can update.

Table 40. Federated updatable global catalog views

Catalog views Description

SYSSTAT.COLUMNS Contains statistical information about each
column in the data source objects (tables
and views) that you have created
nicknames for. Statistics are not recorded
for inherited columns of typed tables.

282 DB2 Federated Systems Guide

Table 40. Federated updatable global catalog views (continued)

Catalog views Description

SYSSTAT.FUNCTIONS Contains statistical information about each
user-defined function. Does not include
built-in functions. Statistics are not
recorded for inherited columns of typed
tables.

SYSSTAT.INDEXES Contains statistical information about each
index specification for data source objects.

SYSSTAT.TABLES Contains information about each base
table. View, synonym, and alias
information is not included in this view.
For typed tables, only the root table of a
table hierarchy is included in the view.
Statistics are not recorded for inherited
columns of typed tables.

Appendix A. Views in the global catalog table containing federated information 283

284 DB2 Federated Systems Guide

Appendix B. Wrapper options for federated systems

Wrapper options are used to configure the wrapper or to define how DB2 uses
the wrapper. Currently, there is only one wrapper option, DB2_FENCED. The
DB2_FENCED wrapper option indicates if the wrapper is fenced or trusted by
DB2. A fenced wrapper operates under some restrictions.

If you did not explicitly set the DB2_FENCED wrapper option to ’N’, you can
alter the wrapper to include this option. If you have scripts or applications
that you use for DDL statements, consider using this option. Even though the
current default setting for DB2_FENCED is ’N’, it is possible that IBM will
change the default setting in the future. When the default changes, any
wrappers created without this option will adhere to the new default. If you
explicitly set the DB2_FENCED wrapper to ’N’, you can ensure that the
behavior of the wrapper will not change when you run the scripts or
applications.

Table 41. Wrapper options and their settings

Option Valid settings Default
setting

DB2_FENCED Indicates if the wrapper is fenced or trusted by
DB2.

’N’ The tasks performed by the wrapper are
not restricted.

’N’

Related concepts:

v “Create the wrapper” on page 88
v “Wrappers and wrapper modules” on page 12
v “Modifying wrappers” on page 195

© Copyright IBM Corp. 1998 - 2002 285

286 DB2 Federated Systems Guide

Appendix C. Server options for federated systems

Server options are used with the CREATE SERVER statement to describe a
data source server. Server options specify data integrity, location, security, and
performance information. Some server options are data source specific, and
are noted in the following table. Life Sciences data sources have additional,
very specific server options.

The common federated server options are:
v Compatibility options. COLLATING_SEQUENCE, IGNORE_UDT
v Data integrity options. IUD_APP_SVPT_ENFORCE
v Location options. CONNECTSTRING, DBNAME, IFILE
v Security options. FOLD_ID, FOLD_PW, PASSWORD
v Performance options. COMM_RATE, CPU_RATIO, IO_RATIO,

LOGIN_TIMEOUT, PACKET_SIZE, PLAN_HINTS, PUSHDOWN,
TIMEOUT, VARCHAR_NO_TRAILING_BLANKS

Table 42. Server options and their settings

Option Valid settings Default
setting

Applies to

COLLATING_SEQUENCE Specifies whether the data source uses the same
default collating sequence as the federated
database, based on the NLS code set and the
country information.

’Y’ The data source has the same collating
sequence as the DB2 federated
database.

’N’ The data source has a different
collating sequence than the DB2
federated database collating sequence.

’I’ The data source has a different
collating sequence than the DB2
federated database collating sequence,
and the data source collating sequence
is insensitive to case (for example,
’STEWART’ and ’StewART’ are
considered equal).

’N’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

© Copyright IBM Corp. 1998 - 2002 287

Table 42. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

COMM_RATE Specifies the communication rate between the
federated server and the data source server.
Expressed in megabytes per second.

Valid values are greater than 0 and less than
2147483648. Values may be expressed as whole
numbers only, for example 12.

’2’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

CONNECTSTRING Specifies initialization properties needed to
connect to an OLE DB provider.

None OLE DB

CPU_RATIO Indicates how much faster or slower a data
source’s CPU runs than the federated server’s
CPU.

Valid values are greater than 0 and less than
1x1023 . Values may be expressed in any valid
double notation, for example 123E10, 123, or
1.21E4.

’1.0’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

288 DB2 Federated Systems Guide

Table 42. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

DBNAME Name of the data source database that you
want the federated server to access. For DB2,
this value corresponds to a specific database
within an instance or, with DB2 for z/OS or
OS/390, the database LOCATION value. Does
not apply to Oracle data sources because Oracle
instances contain only one database.

None. DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Sybase

FOLD_ID

(See notes 1 and 4 at the
end of this table.)

Applies to user IDs that the federated server
sends to the data source server for
authentication. Valid values are:

’U’ The federated server folds the user ID
to uppercase before sending it to the
data source. This is a logical choice for
DB2 family and Oracle data sources
(See note 2 at end of this table.)

’N’ The federated server does nothing to
the user ID before sending it to the
data source. (See note 2 at end of this
table.)

’L’ The federated server folds the user ID
to lowercase before sending it to the
data source.

If none of these settings are used, the federated
server tries to send the user ID to the data
source in uppercase. If the user ID fails, the
server tries sending it in lowercase.

None. DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

Appendix C. Server options for federated systems 289

Table 42. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

FOLD_PW

(See notes 1, 3 and 4 at the
end of this table.)

Applies to passwords that the federated server
sends to data sources for authentication. Valid
values are:

’U’ The federated server folds the
password to uppercase before sending
it to the data source. This is a logical
choice for DB2 family and Oracle data
sources.

’N’ The federated server does nothing to
the password before sending it to the
data source.

’L’ The federated server folds the
password to lowercase before sending
it to the data source.

If none of these settings are used, the federated
server tries to send the password to the data
source in uppercase. If the password fails, the
server tries sending it in lowercase.

None. DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

IFILE Specifies the path and name of the Sybase Open
Client interfaces file. On Windows NT federated
servers, the default is %DB2PATH%\interfaces.
On UNIX federated servers, the default path
and name value is
$DB2INSTANCE/sqllib/interfaces.

None. Sybase

290 DB2 Federated Systems Guide

Table 42. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

IGNORE_UDT Specifies whether the federated server should
determine the built-in type that underlies a
UDT without strong typing. Applies only to
data sources accessed through the CTLIB and
DBLIB protocols. Valid values are:

’Y’ Ignore the fact that UDTs are
user-defined and determine what
built-in types under lie them.

’N’ Do not ignore user-defined
specifications of UDTs.

When DB2 creates nicknames, it looks for and
catalogs information about the objects (tables,
views, stored procedures) that the nicknames
point to. As it looks for the information, it
might find that some objects have data types
that it doesn’t recognize (that is, data types that
don’t map to counterparts at the federated
database). Such unrecognizable types can
include:

v New built-in types

v UDTs with strong typing

v UDTs without strong typing. These are
built-in types that the user has simply
renamed. These types are supported only by
certain data sources, such as Sybase and
Microsoft SQL Server.

When the federated server data types that it
doesn’t recognize, it returns the error message,
SQL3324N. However, it can make an exception
to this practice. For data sources accessible
through the CTLIB or DBLIB protocols, you can
set the IGNORE_UDT server option so that
when the federated database encounters an
unrecognizable UDT without strong typing, the
federated database determines what the UDT’s
underlying built-in type is. Then, if the
federated database recognizes this built-in type,
the federated database returns information
about the built-in type to the catalog. To have
the federated database determine the
underlying built-in types of UDTs that do not
have strong typing, set IGNORE_UDT to ’Y’.

’N’ Sybase

Appendix C. Server options for federated systems 291

Table 42. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

IO_RATIO Denotes how much faster or slower a data
source’s I/O system runs than the federated
server’s I/O system.

Valid values are greater than 0 and less than
1x1023 . Values may be expressed in any valid
double notation, for example 123E10, 123, or
1.21E4.

’1.0’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

IUD_APP_SVPT_ENFORCE Specifies whether DB2 federated system should
enforce detecting or building of application
savepoint statements.

’Y’ The federated server will not allow
INSERT, UPDATE, or DELETE
statements on nicknames if the data
source does not support application
savepoint statements. A SQL error code
(SQL20190) will be generated when
DB2 cannot perform atomic INSERT,
UPDATE, or DELETE.

’N’ The federated server will allow
INSERT, UPDATE, or DELETE
statements on nicknames.

’Y’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

LOGIN_TIMOUT Specifies the number of seconds for the DB2
federated server to wait for a response from
Sybase Open Client to the login request. The
default values are the same as for TIMEOUT.

’0’ Sybase

NODE Name by which a data source is defined as an
instance to its RDBMS.

None. Informix,
MS SQL
Server,
Oracle,
Sybase

292 DB2 Federated Systems Guide

Table 42. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

PACKET_SIZE Specifies the packet size of the Sybase interfaces
file in bytes. If the data source does not support
the specified packet size, the connection will
fail. Increasing the packet size when each record
is very large (for example, when inserting rows
into large tables) significantly increases
performance. The byte size is a numeric value.

Sybase

PASSWORD Specifies whether passwords are sent to a data
source.

’Y’ Passwords are always sent to the data
source and validated. This is the
default value.

’N’ Passwords are not sent to the data
source (regardless of any user
mappings) and not validated.

’ENCRYPTION’
Passwords are always sent to the data
source in encrypted form and
validated. Valid only for DB2 family
data sources that support encrypted
passwords.

’Y’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

PLAN_HINTS Specifies whether plan hints are to be enabled.
Plan hints are statement fragments that provide
extra information for data source optimizers.
This information can, for certain query types,
improve query performance. The plan hints can
help the data source optimizer decide whether
to use an index, which index to use, or which
table join sequence to use.

’Y’ Plan hints are to be enabled at the data
source if the data source supports plan
hints.

’N’ Plan hints are not to be enabled at the
data source.

’N’ Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

Appendix C. Server options for federated systems 293

Table 42. Server options and their settings (continued)

Option Valid settings Default
setting

Applies to

PUSHDOWN
’Y’ DB2 will consider letting the data

source evaluate operations.

’N’ DB2 will only retrieve columns from
the remote data source and will not let
the data source evaluate other
operations, such as joins.

’Y’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

TIMEOUT Specifies the number of seconds the DB2
federated server will wait for a response from
Sybase Open Client for any SQL statement. The
value of seconds is a positive whole number in
DB2 Universal Database’s integer range. The
timeout value that you specify depends on
which wrapper you are using. The default
behavior of the TIMEOUT option for the Sybase
wrappers is 0, which causes DB2 to wait
indefinitely for a response.

’0’ Sybase

VARCHAR_NO_
TRAILING_BLANKS

This option applies to data sources which have
variable character data types that do not pad
the length with trailing blanks. Some data
sources, such as Oracle, have non-blank-padded
comparison semantics that return the same
results as the DB2 for UNIX and Windows
comparison semantics. Set this option when you
want it to apply to all the VARCHAR and
VARCHAR2 columns in the data source objects
that will be accessed from the designated
server. This includes views.

’Y’ This data source has non-blank-padded
comparison semantics similar to the
federated server.

’N’ This data source has different
varying-length character comparison
semantics than the federated server.

’N’ DB2 for
iSeries

DB2 for
z/OS and
OS/390

DB2 for
UNIX and
Windows

Informix,
MS SQL
Server,
ODBC,
Oracle,
Sybase

294 DB2 Federated Systems Guide

Notes on this table:
1. This field is applied regardless of the value specified for authentication.
2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are

logically equivalent to each other.
3. The setting for FOLD_PW has no effect when the setting for password is

‘N’. Because no password is sent, case cannot be a factor.
4. Avoid null settings for either of these options. A null setting may seem

attractive because DB2 will make multiple attempts to resolve user IDs
and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

Related concepts:

v “Server definitions and server options” on page 14
v “Server characteristics affecting pushdown opportunities” on page 235
v “Server characteristics affecting global optimization” on page 247

Related tasks:

v “Registering the server for table-structured files” in the DB2 Life Sciences
Data Connect Planning, Installation, and Configuration Guide

v “Registering the server for Documentum data sources” in the DB2 Life
Sciences Data Connect Planning, Installation, and Configuration Guide

v “Registering the server for an Excel data source” in the DB2 Life Sciences
Data Connect Planning, Installation, and Configuration Guide

v “Registering the server for a BLAST data source” in the DB2 Life Sciences
Data Connect Planning, Installation, and Configuration Guide

v “Registering the server for an XML data source” in the DB2 Life Sciences
Data Connect Planning, Installation, and Configuration Guide

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

Appendix C. Server options for federated systems 295

296 DB2 Federated Systems Guide

Appendix D. User options for federated systems

User options provide authorization and accounting string information for user
mappings between the federated server and a data source. These options can
be used with any data source that supports user ID and password
authorization.

These options are used with the CREATE USER MAPPING statement.

Table 43. User Options and their settings

Option Valid settings Default
setting

ACCOUNTING_STRING Used to specify a DRDA accounting string. Valid settings
include any string of length 255 or less. This option is required
only if accounting information needs to be passed. See the DB2
Connect Users Guide for more information.

None

REMOTE_AUTHID Indicates the authorization ID used at the data source. Valid
settings include any string of length 255 or less. If this option is
not specified, the ID used to connect to database is used.

None

REMOTE_DOMAIN Indicates the Windows NT domain used to authenticate users
connecting to this data source. Valid settings include any valid
Windows NT domain name. If this option is not specified, the
data source will authenticate using the default authentication
domain for that database.

None

REMOTE_PASSWORD Indicates the authorization password used at the data source.
Valid settings include any string of length 32 or less. If this
option is not specified, the password used to connect to the
database is used.

None

Related concepts:

v “DB2 Connect and DRDA” in the DB2 Connect User’s Guide

v “DRDA and data access” in the DB2 Connect User’s Guide

© Copyright IBM Corp. 1998 - 2002 297

298 DB2 Federated Systems Guide

Appendix E. Column options for federated systems

You can specify column information in the CREATE NICKNAME or ALTER
NICKNAME statements using parameters called column options. The primary
purpose of column options is to provide information about nickname columns
to the SQL Compiler. Setting column options for one or more columns to ’Y’
allows the SQL Compiler to consider additional pushdown possibilities for
predicates that perform evaluation operation. This assists the Compiler in
reaching global optimization.You can specify any of these values in either
upper- or lowercase.

Note: The Life Sciences Data Connect wrappers allow additional column
options.

Table 44. Column options and their settings

Option Valid settings Default
setting

NUMERIC_STRING
‘Y’ Yes, this column contains strings of numeric characters

’0’, ’1’, ’2’, ’9’. It does not contain blanks.
IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’.

‘N’ No, this column is either not a numeric string column
or is a numeric string column that contains blanks.

By setting NUMERIC_STRING to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from remote evaluation because of a different
collating sequence.

‘N’

© Copyright IBM Corp. 1998 - 2002 299

Table 44. Column options and their settings (continued)

Option Valid settings Default
setting

VARCHAR_NO_
TRAILING_BLANKS

This option applies to data sources which have variable
character data types that do not pad the lenght with trailing
blanks.

‘Y’ Yes, trailing blanks are absent from this VARCHAR
column.

‘N’ No, trailing blanks are present in this VARCHAR
column.

Some data sources, such as Oracle, have non-blank-padded
comparison semantics that return the same results as the DB2
for UNIX and Windows comparison semantics. Set this option
when you want it to apply only to a specifc VARCHAR or
VARCHAR2 column in a data source object.

‘N‘

Related concepts:

v “Fast track to configuring your data sources” on page 85
v “Column options” on page 17
v “Pushdown analysis” on page 233

Related tasks:

v “Global optimization” on page 246

300 DB2 Federated Systems Guide

Appendix F. Function mapping options for federated
systems

DB2 supplies default mappings between existing built-in data source functions
and built-in DB2 functions. For most data sources, the default function
mappings are in the wrappers. To use a data source function that the
federated server does not recognize, you must create a function mapping
between a data source function and a counterpart function at the federated
database.

The primary purpose of function mapping options, is to provide information
about the potential cost of executing a data source function at the data source.
Pushdown analysis determines if a function at the data source is able to
execute a function in a query. The query optimizer decides if pushing down
the function processing to the data source is the least cost alternative.

The statistical information provided in the function mapping definition helps
the query optimizer compare the estimated cost of executing the data source
function with the estimated cost of executing the DB2 function.

Table 45. Function mapping options and their settings

Option Valid settings Default
setting

DISABLE Disable a default function mapping. Valid values are
‘Y’ and ‘N’.

‘N’

INITIAL_INSTS Estimated number of instructions processed the first
and last time that the data source function is
invoked.

‘0’

INITIAL_IOS Estimated number of I/Os performed the first and
last time that the data source function is invoked.

‘0’

IOS_PER_ARGBYTE Estimated number of I/Os expended for each byte of
the argument set that’s passed to the data source
function.

‘0’

IOS_PER_INVOC Estimated number of I/Os per invocation of a data
source function.

‘0’

INSTS_PER_ARGBYTE Estimated number of instructions processed for each
byte of the argument set that’s passed to the data
source function.

‘0’

INSTS_PER_INVOC Estimated number of instructions processed per
invocation of the data source function.

‘450’

© Copyright IBM Corp. 1998 - 2002 301

Table 45. Function mapping options and their settings (continued)

Option Valid settings Default
setting

PERCENT_ARGBYTES Estimated average percent of input argument bytes
that the data source function will actually read.

‘100’

REMOTE_NAME Name of the data source function. local
name

302 DB2 Federated Systems Guide

Appendix G. Valid server types in SQL statements

Server types indicate what kind of data source the server will represent.
Server types vary by vendor, purpose, and operating system. Supported
values depend on the wrapper being used.

You need to specify a valid server type in the CREATE SERVER statement.

CTLIB wrapper

Sybase data sources supported by Sybase CTLIB client software

Server Type Data Source

SYBASE Sybase

DBLIB wrapper

Sybase or Microsoft SQL Server data sources supported by DBLIB client
software

Server Type Data Source

SYBASE Sybase

DJXMSSQL3 wrapper

Microsoft SQL Server data sources supported by ODBC 3.0 (or higher) driver

Server Type Data Source

MSSQLSERVER Microsoft SQL Server

DRDA wrapper

DB2 Family

Table 46. IBM DB2 for UNIX and Windows

Server Type Data Source

DB2/UDB IBM DB2 Universal Database

DATAJOINER IBM DB2 DataJoiner V2.1 and V2.1.1

© Copyright IBM Corp. 1998 - 2002 303

Table 46. IBM DB2 for UNIX and Windows (continued)

Server Type Data Source

DB2/6000 IBM DB2 for AIX

DB2/AIX IBM DB2 for AIX

DB2/HPUX IBM DB2 for HP-UX V1.2

DB2/HP IBM DB2 for HP-UX

DB2/NT IBM DB2 for Windows NT

DB2/EEE IBM DB2 Enterprise-Extended Edition

DB2/CS IBM DB2 for Common Server

DB2/SUN IBM DB2 for Solaris V1 and V1.2

DB2/PE IBM DB2 for Personal Edition

DB2/2 IBM DB2 for OS/2

DB2/LINUX IBM DB2 for Linux

DB2/PTX IBM DB2 for NUMA-Q

DB2/SCO IBM DB2 for SCO Unixware

Table 47. IBM DB2 for iSeries (and AS/400)

Server Type Data Source

DB2/400 IBM DB2 for iSeries and AS/400

Table 48. IBM DB2 for z/OS and OS/390

Server Type Data Source

DB2/ZOS IBM DB2 for z/OS

DB2/390 IBM DB2 for OS/390

DB2/MVS IBM DB2 for MVS

Table 49. IBM DB2 Server for VM and VSE

Server Type Data Source

DB2/VM IBM DB2 for VM

DB2/VSE IBM DB2 for VSE

SQL/DS IBM SQL/DS

304 DB2 Federated Systems Guide

Informix wrapper

Informix data sources supported by Informix Client SDK software

Server Type Data Source

INFORMIX Informix

MSSQLODBC3 wrapper

Microsoft SQL Server data sources supported by DataDirect Connect ODBC
3.6 driver

Server Type Data Source

MSSQLSERVER Microsoft SQL Server

NET8 wrapper

Oracle data sources supported by Oracle Net8 client software.

Server Type Data Source

ORACLE Oracle Version 8.0. or later

ODBC wrapper

ODBC data sources supported by the ODBC 3.0 driver.

Server Type Data Source

ODBCSERVER ODBC

OLE DB wrapper

OLE DB providers compliant with Microsoft OLE DB 2.0 or later.

Server Type Data Source

none required Any OLE DB provider

Appendix G. Valid server types in SQL statements 305

SQLNET wrapper

Oracle data sources supported by Oracle SQL*Net V1 or V2 client software.

Server Type Data Source

ORACLE Oracle V7.3. or later

306 DB2 Federated Systems Guide

Appendix H. Default forward data type mappings

When a nickname is created for a data source object, DB2 for UNIX and
Windows populates the global catalog with information about the table.

This information includes the remote data type for each column, and the
corresponding DB2 for UNIX and Windows data type. The DB2 for UNIX and
Windows data type is referred to as the local data type.

The federated database uses data type mappings to determine which DB2 for
UNIX and Windows data type should be defined for the column of a data
source object.

The data types at the data source must map to corresponding DB2 for UNIX
and Windows data types so that the federated server can retrieve data from
data sources. For most data sources, the default type mappings are in the
wrappers. The default type mappings for DB2 family data sources are in the
DRDA wrapper. The default type mappings for Informix are in the
INFORMIX wrapper, and so forth.

DB2 for UNIX and Windows federated servers do not support mappings for
these data types: LONG VARCHAR, LONG VARGRAPHIC, DATALINK, and
user-defined types.

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type.

You can override a default type mapping, or create a new type mapping with
the CREATE TYPE MAPPING statement.

The following tables show the default forward mappings between DB2 for
UNIX and Windows data types and data source data types.

These mappings are valid with all the supported versions, unless otherwise
noted.

Note: For all default forward data types mapping from a data source to DB2
for UNIX and Windows, the DB2 federated schema is SYSIBM.

© Copyright IBM Corp. 1998 - 2002 307

DB2 for z/OS and OS/390 data sources

Table 50. DB2 for z/OS and OS/390 forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - - - - - - SMALLINT - 0 -

INTEGER - - - - - - INTEGER - 0 -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - - - - - - DOUBLE - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARG 1 16336 - - - - VARGRAPHIC - 0 N

DATE - - - - - - DATE - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

308 DB2 Federated Systems Guide

DB2 for iSeries data sources

Table 51. DB2 for iSeries forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - - - - - - SMALLINT - 0 -

INTEGER - - - - - - INTEGER - 0 -

NUMERIC - - - - - - DECIMAL - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - - - - - - DOUBLE - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

GRAPHIC 128 16336 - - - - VARGRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARG 1 16336 - - - - VARGRAPHIC - 0 N

DATE - - - - - - DATE - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

Appendix H. Default forward data type mappings 309

DB2 Server for VM and VSE data sources

Table 52. DB2 Server for VM and VSE forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - - - - - - SMALLINT - - -

INTEGER - - - - - - INTEGER - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - - - - - - DOUBLE - - -

CHAR 1 254 - - - - CHAR - 0 N

VARCHAR 1 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPH 1 16336 - - - - VARGRAPHIC - 0 N

DATE - - - - - - DATE - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

DBAHW - - - - - - SMALLINT - 0 -

DBAINT - - - - - - INTEGER - 0 -

310 DB2 Federated Systems Guide

DB2 for UNIX and Windows data sources

Table 53. DB2 for UNIX and Windows forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - - - - - - SMALLINT - 0 -

INTEGER - - - - - - INTEGER - 0 -

BIGINT - - - - - - BIGINT - 0 -

DECIMAL - - - - - - DECIMAL - - -

REAL - - - - - - REAL - - -

FLOAT - - - - - - DOUBLE - - -

DOUBLE - - - - - - DOUBLE - - -

CHAR - - - - - - CHAR - 0 N

VARCHAR - - - - - - VARCHAR - 0 N

CHAR - - - - Y - CHAR - 0 Y

VARCHAR - - - - Y - VARCHAR - 0 Y

GRAPHIC - - - - - - GRAPHIC - 0 N

VARGRAPHIC - - - - - - VARGRAPHIC - 0 N

VARGRAPH - - - - - - VARGRAPHIC - 0 N

DATE - - - - - - DATE - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

Appendix H. Default forward data type mappings 311

Informix data sources

Table 54. Informix forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB - - - - - - BLOB 2147483647 - -

BOOLEAN - - - - - - SMALLINT 2 - -

BYTE - - - - - - BLOB 2147483647 - -

CHAR 1 254 - - - - CHARACTER - - -

CHAR 255 32672 - - - - VARCHAR - - -

CLOB - - - - - - CLOB 2147483647 - -

DATE - - - - - - DATE 4 - -

DATETIME 0 4 0 4 - - DATE 4 - -

DATETIME 6 10 6 10 - - TIME 3 - -

DATETIME 0 4 6 15 - - TIMESTAMP 10 - -

DATETIME 6 10 11 15 - - TIMESTAMP 10 - -

DECIMAL 1 31 0 31 - - DECIMAL - - -

DECIMAL 32 32 - - - - DOUBLE 8 - -

FLOAT - - - - - - DOUBLE 8 - -

INTEGER - - - - - - INTEGER 4 - -

INTERVAL - - - - - - DECIMAL 19 5 -

INT8 - - - - - - BIGINT 19 0 -

LVARCHAR 1 32672 - - - - VARCHAR - - -

MONEY 1 31 0 31 - - DECIMAL - - -

MONEY 32 32 - - - - DOUBLE 8 - -

NCHAR 1 254 - - - - CHARACTER - - -

NCHAR 255 32672 - - - - VARCHAR - - -

NVARCHAR 1 32672 - - - - VARCHAR - - -

312 DB2 Federated Systems Guide

Table 54. Informix forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

REAL - - - - - - REAL 4 - -

SERIAL - - - - - - INTEGER 4 - -

SERIAL8 - - - - - - BIGINT 19 0

SMALLFLOAT - - - - - - REAL 4 - -

SMALLINT - - - - - - SMALLINT 2 - -

TEXT - - - - - - CLOB 2147483647 - -

VARCHAR 1 32672 - - - - VARCHAR - - -

Oracle SQLNET data sources

Table 55. Oracle SQLNET forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

NUMBER 1 38 -84 127 - \0 DOUBLE 0 0 N

NUMBER 1 31 0 31 - >= DECIMAL 0 0 N

NUMBER 1 5 0 0 - \0 SMALLINT 0 0 N

NUMBER 6 10 0 0 - \0 INTEGER 0 0 N

FLOAT 1 63 0 0 - \0 REAL 0 0 N

Appendix H. Default forward data type mappings 313

Table 55. Oracle SQLNET forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FLOAT 64 126 0 0 - \0 DOUBLE 0 0 N

CHAR 1 254 0 0 - \0 CHAR 0 0 N

CHAR 255 32672 0 0 - \0 VARCHAR 0 0 N

VARCHAR2 1 32672 0 0 - \0 VARCHAR 0 0 N

RAW 1 254 0 0 - \0 CHAR 0 0 Y

RAW 255 32672 0 0 - \0 VARCHAR 0 0 Y

LONG 0 0 0 0 - \0 CLOB 2147483647 0 N

LONG RAW 0 0 0 0 - \0 BLOB 2147483647 0 Y

DATE 0 0 0 0 - \0 TIMESTAMP 0 0 N

MLSLABEL 0 0 0 0 - \0 VARCHAR 255 0 N

ROWID 0 0 0 NULL- \0 CHAR 18 0 N

Oracle NET8 data sources

Table 56. Oracle NET8 forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

NUMBER 1 38 -84 127 - \0 DOUBLE 0 0 N

314 DB2 Federated Systems Guide

Table 56. Oracle NET8 forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

NUMBER 1 31 0 31 - >= DECIMAL 0 0 N

NUMBER 1 5 0 0 - \0 SMALLINT 0 0 N

NUMBER 6 10 0 0 - \0 INTEGER 0 0 N

FLOAT 1 63 0 0 - \0 REAL 0 0 N

FLOAT 64 126 0 0 - \0 DOUBLE 0 0 N

CHAR 1 254 0 0 - \0 CHAR 0 0 N

CHAR 255 32672 0 0 - \0 VARCHAR 0 0 N

VARCHAR2 1 32672 0 0 - \0 VARCHAR 0 0 N

RAW 1 254 0 0 - \0 CHAR 0 0 Y

RAW 255 32672 0 0 - \0 VARCHAR 0 0 Y

CLOB 0 0 0 0 - \0 CLOB 2147483647 0 N

BLOB 0 0 0 0 - \0 BLOB 2147483647 0 Y

DATE 0 0 0 0 - \0 TIMESTAMP 0 0 N

MLSLABEL 0 0 0 0 - \0 VARCHAR 255 0 N

ROWID 0 0 0 NULL - \0 CHAR 18 0 N

Appendix H. Default forward data type mappings 315

Microsoft SQL Server data sources

Table 57. Microsoft SQL Server forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

int - - - - - - INTEGER 4 - -

intn - - - - - - INTEGER 4 - -

smallint - - - - - - SMALLINT 2 - -

tinyint - - - - - - SMALLINT 2 - -

bit - - - - - - SMALLINT 2 - -

float - 8 - - - - DOUBLE 8 - -

floatn - 8 - - - - DOUBLE 8 - -

float - 4 - - - - REAL 4 - -

floatn - 4 - - - - REAL 4 - -

real - - - - - - REAL 4 - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

smallmoney - - - - - - DECIMAL 10 4 -

smallmoneyn - - - - - - DECIMAL 10 4 -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 38 0 38 - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

decimaln 32 38 0 38 - - DOUBLE - - -

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 38 0 38 - - DOUBLE 8 - -

numericn 1 31 0 31 - - DECIMAL - - -

numericn 32 38 0 38 - - DOUBLE - - -

char 1 254 - - - - CHAR - - N

316 DB2 Federated Systems Guide

Table 57. Microsoft SQL Server forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

sysname 1 254 - - - - CHAR - - N

char 255 8000 - - - - VARCHAR - - N

varchar 1 8000 - - - - VARCHAR - - N

text - - - - - - CLOB - - N

nchar 1 127 - - - - GRAPHIC - - N

nchar 128 4000 - - - - VARGRAPHIC - - N

nvarchar 1 4000 - - - - VARGRAPHIC - - N

binary 1 254 - - - - CHARACTER - - Y

binary 255 8000 - - - - VARCHAR - - Y

varbinary 1 8000 - - - - VARCHAR - - Y

image - - - - - - BLOB 2147483647 - Y

datetime - - - - - - TIMESTAMP 10 - -

datetimen - - - - - - TIMESTAMP 10 - -

smalldatetime - - - - - - TIMESTAMP 10 - -

timestamp - - - - - - VARCHAR 8 Y

sysname - - - - - - VARCHAR 30 Y

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 32 0 31 - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

Appendix H. Default forward data type mappings 317

Table 57. Microsoft SQL Server forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_REAL - - - - - - DOUBLE 8 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 8000 - - - - VARCHAR - - N

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 8000 - - - - VARCHAR - - Y

SQL_VARCHAR 1 8000 - - - - VARCHAR - - N

SQL_VARBINARY 1 8000 - - - - VARCHAR - - Y

SQL_LONGVARCHAR - - - - - - CLOB 2147483647 - N

SQL_LONGVARBINARY- - - - - - BLOB - - Y

SQL_DATE - - - - - - DATE 4 - -

SQL_TIME - - - - - - TIME 3 - -

SQL_TIMESTAMP - - - - - - TIMESTAMP 10 - -

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_BIGINT - - - - - - DECIMAL - - -

DUMMY65 1 1 38 -84 127 - - DOUBLE - - -

uniqueidentifier 2 1 4000 - - Y - VARCHAR 16 - Y

SQL_GUID 2 1 4000 - - Y - VARCHAR 16 - Y

ntext 2 - - - - - - CLOB 2147483647 - Y

DUMMY2000 3 1 38 -84 127 - - DOUBLE - - -

Notes:

1. This type mapping is only valid with Microsoft SQL Server Version 6.5.

2. This type mapping is only valid with Microsoft SQL Server Version 7.

3. This type mapping is only valid with Windows 2000 operating systems.

318 DB2 Federated Systems Guide

ODBC data sources

Table 58. ODBC forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_NUMERIC 32 32 0 31 - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

SQL_REAL - - - - - - DOUBLE 8 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 32672 - - - - VARCHAR - - N

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 32672 - - - - VARCHAR - - Y

SQL_VARCHAR 1 32672 - - - - VARCHAR - - N

SQL_VARBINARY 1 32672 - - - - VARCHAR - - Y

SQL_LONGVARCHAR - - - - - - CLOB 2147483647 - N

SQL_LONGVARBINARY- - - - - - BLOB - - Y

SQL_DATE - - - - - - DATE 4 - Y

SQL_TIME - - - - - - TIME 3 - Y

SQL_TIMESTAMP - - - - - - TIMESTAMP 10 - Y

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_BIGINT - - - - - - DECIMAL - - -

Appendix H. Default forward data type mappings 319

Table 58. ODBC forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_WCHAR 1 127 - - - - GRAPHIC - - N

SQL_WCHAR 128 16336 - - - - VARGRAPHIC - - N

SQL_WVARCHAR 1 16336 - - - - VARGRAPHIC - - N

SQL_WLONGVARCHAR- - - - - - DBCLOB 1073741823 -
NY

Sybase data sources

Table 59. Sybase CTLIB forward default data type mappings (Not all columns shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

int - - - - - - INTEGER - - -

intn - - - - - - INTEGER - - -

smallint - - - - - - SMALLINT - - -

tinyint - - - - - - SMALLINT - - -

bit - - - - - - SMALLINT - - -

float - 8 - - - - DOUBLE - - -

floatn - 8 - - - - DOUBLE - - -

320 DB2 Federated Systems Guide

Table 59. Sybase CTLIB forward default data type mappings (Not all columns shown) (continued)
R

E
M

O
T

E
_T

Y
P

E
N

A
M

E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

float - 4 - - - - REAL - - -

floatn - 4 - - - - REAL - - -

real - - - - - - REAL - - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

smallmoney - - - - - - DECIMAL 10 4 -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 32 - - - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

decimaln 32 32 - - - - DOUBLE - - -

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 32 - - - - DOUBLE - - -

numericn 1 31 0 31 - - DECIMAL - - -

numericn 32 32 - - - - DOUBLE - - -

char 1 254 - - - - CHAR - - Y

sysname 1 254 - - - - CHAR - - Y

char 255 255 - - - - VARCHAR - - Y

varchar 1 255 - - - - VARCHAR - - Y

nchar 1 127 - - - - GRAPHIC - - -

nchar 128 255 - - - - VARGRAPHIC - - -

nvarchar 1 255 - - - - VARGRAPHIC - - -

binary 1 254 - - - - CHAR - - Y

binary 255 255 - - - - VARCHAR - - Y

text - - - - - - CLOB - - -

Appendix H. Default forward data type mappings 321

Table 59. Sybase CTLIB forward default data type mappings (Not all columns shown) (continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

R
E

M
O

T
E

_B
IT

_D
A

TA

R
E

M
O

T
E

_D
A

TA
_O

P
E

R
A

T
O

R
S

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
E

N
G

T
H

FE
D

E
R

A
T

E
D

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

image - - - - - - BLOB - - -

varbinary 1 255 - - - - VARCHAR - - Y

datetime - - - - - - TIMESTAMP - - -

datetimen - - - - - - TIMESTAMP - - -

smalldatetime - - - - - - TIMESTAMP - - -

timestamp - - - - - - VARCHAR 8 - Y

322 DB2 Federated Systems Guide

Appendix I. Default reverse data type mappings

There are two kinds of mappings between data source data types and
federated database data types: forward type mappings and reverse type
mappings. In a forward type mapping, the mapping is from a remote type to a
comparable local type. The other type of mapping is a reverse type mapping,
which is used with transparent DDL to create or modify remote tables.

For most data sources, the default type mappings are in the wrappers. The
default type mappings for DB2 family data sources are in the DRDA wrapper.
The default type mappings for Informix are in the INFORMIX wrapper, and
so forth.

When you define a remote table or view to the DB2 federated database, the
definition includes a reverse type mapping. The mapping is from a local DB2
for UNIX and Windows data type for each column, and the corresponding
remote data type. For example, there is a default reverse type mapping in
which the local type REAL points to the Informix type SMALLFLOAT.

DB2 for UNIX and Windows federated servers do not support mappings for
these local data types: LONG VARCHAR, LONG VARGRAPHIC, DATALINK,
and user-defined types.

When you use the CREATE TABLE statement to create a remote table, you
specify the local data types you want to include in the remote table. These
default reverse type mappings will assign corresponding remote types to
these columns. For example, suppose that you use the CREATE TABLE
statement to define an Informix table with a column C2. You specify BIGINT
as the data type for C2 in the statement. The default reverse type mapping of
BIGINT depends on which version of Informix you are creating the table on.
The mapping for C2 in the Informix table will be to DECIMAL in Informix
Version 7 and to INT8 in Informix Version 8.

You can override a default type mapping, or create a new type mapping with
the CREATE TYPE MAPPING statement.

The following tables show the default reverse mappings between DB2 for
UNIX and Windows local data types and remote data source data types.

These mappings are valid with all the supported versions, unless otherwise
noted.

© Copyright IBM Corp. 1998 - 2002 323

DB2 for z/OS and OS/390 data sources

Table 60. DB2 for z/OS and OS/390 reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

SMALLINT - 2 - - - - SMALLINT - - -

INTEGER - 4 - - - - INTEGER - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - 8 - - - - DOUBLE - - -

CHARACTER - - - - - - CHAR - - N

VARCHAR - - - - - - VARCHAR - - N

CHARACTER - - - - Y - CHAR - - Y

VARCHAR - - - - Y - VARCHAR - - Y

GRAPHIC - - - - - - GRAPHIC - - N

VARGRAPHIC - - - - - - VARGRAPHIC - - N

DATE - 4 - - - - DATE - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

324 DB2 Federated Systems Guide

DB2 for iSeries data sources

Table 61. DB2 for iSeries reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

SMALLINT - 2 - - - - SMALLINT - - -

INTEGER - 4 - - - - INTEGER - - -

DECIMAL - - - - - - NUMERIC - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

CHARACTER - - - - - - CHARACTER - - N

VARCHAR - - - - - - VARCHAR - - N

CHARACTER - - - - Y - CHARACTER - - Y

VARCHAR - - - - Y - VARCHAR - - Y

GRAPHIC - - - - - - GRAPHIC - - N

VARGRAPHIC - - - - - - VARG - - N

DATE - 4 - - - - DATE - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

Appendix I. Default reverse data type mappings 325

DB2 Server for VM and VSE data sources

Table 62. DB2 Server for VM and VSE reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

SMALLINT - 2 - - - - SMALLINT - - -

INTEGER - 4 - - - - INTEGER - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

CHARACTER - - - - - - CHAR - - -

VARCHAR - - - - - - VARCHAR - - -

CHARACTER - - - - Y - CHAR - - Y

VARCHAR - - - - Y - VARCHAR - - Y

GRAPHIC - - - - - - GRAPHIC - - N

VARGRAPH - - - - - - VARGRAPH - - N

DATE - 4 - - - - DATE - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

326 DB2 Federated Systems Guide

DB2 for UNIX and Windows data sources

Table 63. DB2 for UNIX and Windows reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SMALLINT - 2 - - - - SMALLINT - - -

INTEGER - 4 - - - - INTEGER - - -

BIGINT - 8 - - - - BIGINT - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT - 8 - - - - DOUBLE - - -

DOUBLE - 8 - - - - DOUBLE - - -

CHARACTER - - - - - - CHAR - - N

VARCHAR - - - - - - VARCHAR - - N

CHARACTER - - - - Y - CHAR - - Y

VARCHAR - - - - Y - VARCHAR - - Y

GRAPHIC - - - - - - GRAPHIC - - N

VARGRAPH - - - - - - VARGRAPHIC - - N

DATE - 4 - - - - DATE - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

CLOB - - - - - - CLOB - - -

BLOB - - - - - - BLOB - - -

DBCLOB - - - - - - DBCLOB - - -

Appendix I. Default reverse data type mappings 327

Informix data sources

Table 64. Informix reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

BIGINT1 - 19 0 - - - DECIMAL 21 - -

BIGINT 2 - - - - - - INT8 - - -

BLOB 1 2147483647- - - - BYTE - - -

CHARACTER - - - - N - CHAR - - -

CHARACTER - - - - Y - BYTE - - -

CLOB 1 2147483647- - - - TEXT - - -

DATE - 4 - - - - DATE - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

INTEGER - 4 - - - - INTEGER - - -

LONG
VARCHAR

- 32700 - - N - TEXT - - -

LONG
VARCHAR

- 32700 - - Y - BYTE - - -

REAL - 4 - - - - SMALLFLOAT - - -

SMALLINT - 2 - - - - INTEGER - - -

TIME - 3 - - - - DATETIME 6 10 -

TIMESTAMP - 10 - - - - DATETIME 0 15 -

VARCHAR 1 254 - - N - VARCHAR - - -

VARCHAR 255 32672 - - N - TEXT - - -

VARCHAR - - - - Y - BYTE - - -

VARCHAR 2 255 32672 - - N - LVARCHAR - - -

328 DB2 Federated Systems Guide

Table 64. Informix reverse default data type mappings (Not all columns shown) (continued)
FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

Notes:

1. This type mapping is only valid with Informix server Version 7 (or lower).

2. This type mapping is only valid with Informix server Version 8 (or higher).

Oracle SQLNET data sources

Note: The DB2 for UNIX and Windows BIGINT data type is not available for
transparent DDL. You cannot specify the BIGINT data type in a CREATE
TABLE statement when creating a remote Oracle table.

Table 65. Oracle SQLNET reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

DOUBLE 0 8 0 0 N \0 FLOAT 126 0 N

REAL 0 4 0 0 N \0 FLOAT 63 0 N

DECIMAL 0 0 0 0 N \0 NUMBER 0 0 N

SMALLINT 0 2 0 0 N \0 NUMBER 5 0 N

Appendix I. Default reverse data type mappings 329

Table 65. Oracle SQLNET reverse default data type mappings (Not all columns shown) (continued)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

INTEGER 0 4 0 0 N \0 NUMBER 10 0 N

CHARACTER 1 254 0 0 N \0 CHAR 0 0 N

VARCHAR 1 4000 0 0 N \0 VARCHAR2 0 0 N

CLOB 0 21474836470 0 N \0 LONG 0 0 N

CHARACTER 0 0 0 0 Y \0 RAW 0 0 Y

VARCHAR 1 2000 0 0 Y \0 RAW 0 0 Y

BLOB 0 21474836470 0 Y \0 LONG RAW 0 0 Y

TIMESTAMP 0 10 0 0 N \0 DATE 0 0 N

DATE 0 4 0 0 N \0 DATE 0 0 N

TIME 0 3 0 0 N \0 DATE 0 0 N

Oracle NET8 data sources

Note: The DB2 for UNIX and Windows BIGINT data type is not available for
transparent DDL. You cannot specify the BIGINT data type in a CREATE
TABLE statement when creating a remote Oracle table.

330 DB2 Federated Systems Guide

Table 66. Oracle NET8 reverse default data type mappings (Not all columns shown)
FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

DOUBLE 0 8 0 0 N \0 FLOAT 126 0 N

REAL 0 4 0 0 N \0 FLOAT 63 0 N

DECIMAL 0 0 0 0 N \0 NUMBER 0 0 N

SMALLINT 0 2 0 0 N \0 NUMBER 5 0 N

INTEGER 0 4 0 0 N \0 NUMBER 10 0 N

CHARACTER 1 254 0 0 N \0 CHAR 0 0 N

VARCHAR 1 4000 0 0 N \0 VARCHAR2 0 0 N

CLOB 0 21474836470 0 N \0 CLOB 0 0 N

CHARACTER 0 0 0 0 Y \0 RAW 0 0 Y

VARCHAR 1 2000 0 0 Y \0 RAW 0 0 Y

BLOB 0 21474836470 0 Y \0 BLOB 0 0 Y

TIMESTAMP 0 10 0 0 N \0 DATE 0 0 N

DATE 0 4 0 0 N \0 DATE 0 0 N

TIME 0 3 0 0 N \0 DATE 0 0 N

Appendix I. Default reverse data type mappings 331

Microsoft SQL Server data sources

Table 67. Microsoft SQL Server reverse default data type mappings (Not all columns shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

INTEGER - - - - - - int - - -

SMALLINT - - - - - - smallint - - -

DOUBLE - 8 - - - - float - - -

DECIMAL - - - - - - decimal - - -

CHARACTER - - - - N - char - - -

VARCHAR 1 8000 - - N - varchar - - -

VARCHAR 8001 32672 - - N - text - - -

CLOB - - - - - - text - - -

CHARACTER - - - - Y - binary - - -

VARCHAR 1 8000 - - Y - varbinary - - -

VARCHAR 8001 32672 - - Y - image - - -

LONG
VARCHAR

- 32700 - - Y - image
- - -

BLOB - - - - - - image - - -

TIMESTAMP - 10 - - - - datetime - - -

TIME - 3 - - - - datetime - - -

DATE - 4 - - - - datetime - - -

Sybase data sources

These data type mappings only apply to the CTLIB wrapper. The DBLIB
wrapper is read-only and does not support transparent DDL in a Version 8
federated system.

332 DB2 Federated Systems Guide

Table 68. Sybase CTLIB reverse default data type mappings (Not all columns shown)
FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

FE
D

E
R

A
T

E
D

_D
A

TA
_O

P
E

R
A

T
O

R
S

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

R
E

M
O

T
E

_L
E

N
G

T
H

R
E

M
O

T
E

_S
C

A
L

E

R
E

M
O

T
E

_B
IT

_D
A

TA

INTEGER - - - - - - integer - - -

SMALLINT - - - - - - smallint - - -

BIGINT - - - - - - decimal 19 0 -

DOUBLE - - - - - - float - - -

REAL - - - - - - real - - -

DECIMAL - - - - - - decimal - - -

CHARACTER - - - - N - char - - -

VARCHAR 1 255 - - N - varchar - - -

VARCHAR 256 32672 - - N - text - - -

CHARACTER - - - - Y - binary - - -

CLOB - - - - - - text - - -

BLOB - - - - - - image - - -

VARCHAR 1 255 - - Y - varbinary - - -

VARCHAR 256 32672 - - Y - image - - -

GRAPHIC - - - - - - nchar - - -

VARGRAPHIC 1 255 - - - - nvarchar - - -

DATE - - - - - - datetime - - -

TIME - - - - - - datetime - - -

TIMESTAMP - - - - - - datetime - - -

Appendix I. Default reverse data type mappings 333

334 DB2 Federated Systems Guide

Appendix J. Quick reference - useful Internet Web sites

The following table lists Internet Web sites that provide useful information
about DB2 products, updates, support, and education. The DB2 Relational
Connect web site contains general information about federated systems.

Table 69. Quick reference table of useful Internet Web sites

Subject Web site address

DB2 Product Family www.ibm.com/software/data/db2/

DB2 Relational Connect www.ibm.com/software/data/db2/relconnect/

DB2 Life Sciences Data
Connect

www.ibm.com/solutions/lifesciences/

DB2 Connect www.ibm.com/software/data/db2/db2connect/

DB2 FixPaks www.ibm.com/software/data/db2/udb/winos2unix/support/

DB2 Documentation and
FixPak Release Notes

www.ibm.com/software/data/db2/udb/winos2unix/support/

DB2 Support www.ibm.com/software/data/db2/udb/winos2unix/support/

IBM Education www.ibm.com/services/learning/

DB2 Spatial Extender www.ibm.com/software/data/spatial/

DB2 DataPropagator
(Replication)

www.ibm.com/software/data/dpropr/

DB2 Warehouse Manager www.ibm.com/software/data/db2/datawarehouse/

© Copyright IBM Corp. 1998 - 2002 335

336 DB2 Federated Systems Guide

Glossary

Glossary terms for federated systems

column options. In a federated system,
parameters of the ALTER NICKNAME statement
that describe the values in certain columns of the
data source object that a nickname references.
This information is added to the global catalog
and used by the DB2 query optimizer to develop
better access plans. Column options provide a
way to tell the data source wrapper to handle a
column in a different way than it normally
would.

compensation. In a federated system, the ability
for DB2 to process SQL that is not supported by
a data source. DB2 will not push down a query
fragment if the data source cannot process it, or
if DB2 can process it faster than the data source
can. If the data source cannot process it, DB2 will
process it instead. A federated server
compensates for the loss of functionality at the
data source by either simulating the data source
function, or by returning the set of data to the
federated server and performing the function
locally. See also query optimizer and push-down
processing.

data source. In a federated system, typically a
relational DBMS instance and one or more
databases supported by that instance. However,
there are other types of data sources that you can
include in your federated system, such as flat-file
databases and table-structured files.

data source object. In a federated system, an
object at the data source that you want to
perform operations against. Examples include: a
database table, a database view, a spreadsheet
list. You create nicknames on the federated server
to identify the data source objects.

data type mapping. In a federated system, the
mapping of a data type used at a data source to
a DB2 data type. For example, the Oracle type
FLOAT maps by default to the DB2 type

DOUBLE. DB2 supplies default mappings for
most kinds of data types; the default mappings
are in the wrappers.

federated database. The DB2 database in a
federated system. Contains the system catalog,
referred to as the global catalog, and any local
tables, local views, or federated views.

federated server. The DB2 server in a federated
system. Any number of DB2 instances can be
configured to function as federated servers. You
can use existing DB2 instances as your federated
server, or you can create new ones specifically
for the federated system.

federated system. A special type of distributed
database management system (DBMS) that
allows you to query and manipulate data located
on other servers. The data can be in database
managers such as Oracle, Sybase, Informix, and
Microsoft SQL Server, or it can be in lists or
stores such as a spreadsheet, Web site, or data
mart. A federated system consists of a DB2
instance that will operate as a server, a database
that will serve as the federated database, one or
more data sources, and clients (users and
applications) who will access the database and
data sources. A federated system allows you to
send distributed requests to multiple data
sources within a single SQL statement.

foreign server. In a federated system, another
term for data sources. Most often seen with the
SQL/MED standard. See data sources.

function mapping. In a federated system, a
mapping between a data source function and an
existing DB2 function. DB2 supplies default
mappings between existing built-in data source
functions and built-in DB2 functions; the default
mappings are in the wrapper.

function mapping options. In a federated
system, parameters of the CREATE FUNCTION
MAPPING statement to which you can assign

© Copyright IBM Corp. 1998 - 2002 337

values that pertain to the mapping being created
or to the data source function within the
mapping. Such values, for example, can include
estimated statistics on the overhead that will be
consumed when the data source function is
invoked. The query optimizer uses these
estimates to decide if the function should be
invoked by the data source or by DB2 when the
data is returned from the data source. See
function mapping.

function template. A DB2 function that you
create for the purpose of invoking a function on
a data source. A federated server can recognize a
data source function only if there is a mapping
between the data source function and a
counterpart function at the federated database.
When no counterpart exists, or when you want
to force the federated server to use the data
source function, you can create a function
template to act as the counterpart.

global catalog. In a federated system, the
database system catalog. This catalog contains
information about objects in the federated
database and information about objects at the
data sources. Because the catalog contains
information about the entire federated system, it
is called a global catalog. The information in the
global catalog is used by the DB2 query
optimizer to plan the best way to process SQL
statements that involve the data sources.

heterogeneous replication. Replication between
DB2 and non-DB2 relational databases. See also
federated system

index specification. In a federated system, a set
of metadata about a data source object index.
The query optimizer uses this information to
expedite the processing of distributed requests.
When a nickname is created for a data source
object, the federated server gathers any index
information about that object and stores the
information in the global catalog.

nickname. In a federated system, identifiers
used to reference the object located at the data
sources that you want to access. The objects that
nicknames identify are referred to as data source
objects. Examples of data source objects include

tables, views, synonyms, table-structured files,
and search algorithms. Nicknames are not
alternative names for data source objects in the
same way that aliases are; they are pointers by
which the federated server references these
objects.

pass-through. In a federated system, a special
DB2 session used to submit SQL statements
directly to DBMSs using the SQL dialect
associated with that data source. You use a
pass-through session to perform an operation
that is not possible with DB2 SQL/API, or to
perform actions not supported by SQL.

push-down processing. In a federated system,
the processing of segments of a query at a data
source instead of at the federated server.

query optimizer. In a federated system, a
feature of the DB2 SQL Compiler that analyzes
the distributed queries and determines the most
efficient way to run the query. The global
optimizer evaluates queries based on resource
cost. See push-down processing.

server definition. In a federated system, the
name and information that defines the data
sources to the federated database. The server
definition is used by the wrapper when SQL
statements that use nicknames are submitted to
the federated database.

server options. In a federated system,
information within a server definition that either
configures the wrapper itself, or affects the way
that DB2 uses the wrapper. Server option values
are stored in the global catalog.

user mapping. In a federated system, the
association between the authorization ID at the
federated server and the authorization ID at the
data source. User mappings are needed so that
distributed requests can be sent to the data
source.

user options. In a federated system, parameters
of the CREATE USER MAPPING and ALTER
USER MAPPING statements to which values
related to authorization are assigned. For
example, suppose that a user has the same ID

338 DB2 Federated Systems Guide

with different passwords for the federated
database and a data source. For the user to
access the data source, it is necessary to map the
passwords to one another. This is accomplished
with the user option REMOTE_PASSWORD. See
user mapping.

wrapper. In a federated system, the mechanism
that the federated server uses to communicate
with and retrieve data from the data sources. To
implement a wrapper, the federated server uses
routines stored in a library called a wrapper
module. These routines allow the federated
server to perform operations such as connecting
to a data source and retrieving data from it
iteratively.

Glossary 339

340 DB2 Federated Systems Guide

Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1998 - 2002 341

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information that has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

342 DB2 Federated Systems Guide

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious, and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source
language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Notices 343

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both, and have been used
in at least one of the documents in the DB2 UDB documentation library.

ACF/VTAM
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
BookManager
C Set++
C/370
CICS
Database 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eServer
Extended Services
FFST
First Failure Support Technology
IBM
IMS
IMS/ESA
iSeries

LAN Distance
MVS
MVS/ESA
MVS/XA
Net.Data
NetView
OS/390
OS/400
PowerPC
pSeries
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/400
SQL/DS
System/370
System/390
SystemView
Tivoli
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WebSphere
WIN-OS/2
z/OS
zSeries

The following terms are trademarks or registered trademarks of other
companies and have been used in at least one of the documents in the DB2
UDB documentation library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

344 DB2 Federated Systems Guide

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service
marks of others.

Notices 345

346 DB2 Federated Systems Guide

Index

A
access plans

description 8
evaluation decisions 242
optimization decisions 253
viewing 241

ACCOUNTING_STRING
option 297

ALTER NICKNAME statement
examples of 199, 204

ALTER WRAPPER statement
examples of 196
using with DB2_FENCED 196

applications
data integrity 263
isolation levels 263

B
BLAST

valid objects for nicknames 16

C
catalog node 91
catalog statistics

global optimization,
affecting 249

updating 258
catalog table views 281
catalog views 273
Classic Connect

description 24
CLP (command line processor)

federated functions 29
collating sequence

overview 235
COLLATING_SEQUENCE

global optimization,
affecting 247

server option
tuning 235
valid settings 287

column options 299
defining on nicknames 260
description 17
examples 199
numeric_string column

option 260
pushdown analysis,

affecting 239

column options (continued)
varchar_no_trailing_blanks

column option 260
COMM_RATE

global optimization,
affecting 247

valid settings 287
Command Center

the DB2, using 29
command line processor (CLP)

federated functions 29
COMMENT ON statement 257
COMMIT statement

pass-through 277, 278
compensation

description 9
CONNECTSTRING

valid settings 287
Control Center

the DB2, using 29
CPU_RATIO

global optimization,
affecting 247

valid settings 287
CREATE FEDERATED VIEW

statement 261
CREATE FUNCTION MAPPING

statement
discontinuing function

mappings 275
examples 223
function mapping options 273
mapping data source functions to

DB2 functions 271
specifying function names 275

CREATE FUNCTION statement
federated databases 271

CREATE INDEX statement
examples 216
federated 258

CREATE NICKNAME statement
DB2 family data sources 107
Informix data sources 117
Microsoft SQL Server data

sources 147
ODBC data sources 159
Oracle data sources 127
Sybase data sources 137

CREATE REVERSE TYPE MAPPING
statement

discussion 323
CREATE SERVER statement

DB2 family data sources 107
example 91
Informix data sources 117
Microsoft SQL Server data

sources 147
ODBC data sources 159
OLE DB data sources 167
Oracle data sources 127
Sybase data sources 137

CREATE TYPE MAPPING statement
discussion 323
examples 208
mappings between LOBs and

non-LOBs 267
CREATE USER MAPPING statement

DB2 family data sources 107
Informix data sources 117
Microsoft SQL Server data

sources 147
ODBC data sources 159
OLE DB data sources 167
Oracle data sources 127
Sybase data sources 137

CREATE WRAPPER statement
DB2 family data sources 107
Informix data sources 117
Microsoft SQL Server data

sources 147
ODBC data sources 159
OLE DB data sources 167
Oracle data sources 127
Sybase data sources 137

creating
index specifications 216

D
data source objects

cataloging information 258
creating nicknames 96
description 16
indexes overview 99
local 96
performing operations 257
referencing by nicknames in SQL

statements 256
remote 96

© Copyright IBM Corp. 1998 - 2002 347

data sources
access methods protocols, client

software, drivers 5
accessing new data source

objects 180
accessing through federated

views 182
accessing with a pass-through

session 181
adding DB2 family data

sources 107
adding Informix data

sources 117
adding Microsoft SQL Server

data sources 147
adding ODBC data sources 159
adding OLE DB data

sources 167
adding Oracle data sources 127
adding Sybase data sources 137
checking environment variables

Informix 68
multi-partition instance

configuration 68
ODBC driver 68
Oracle 68
Sybase 68

collating sequence and
performance 247

communication rate and
performance 247

configuring
fast path 85
troubleshooting 105

creating user mappings 94
data type mapping 208
data type mappings 264
default wrapper names 12
deleting data 193
description 5
I/O speed and performance 247
inserting data 191
joining a local data source and a

remote data source 188
mapping isolation levels to 263
mapping to DB2 functions 271
optional configuration steps 98
processor speed and

performance 247
querying a single data

source 188
querying multiple remote data

sources 188
remote plan hints and

performance 247

data sources (continued)
supported versions 5
testing the connection from the

server 94
tuning 115, 125
tuning Microsoft SQL Server

configuration 155
tuning ODBC configuration 165
tuning Oracle configuration 135
tuning Sybase configuration 145
updating data 192
using distributed requests to

query 268
using pass-through to query 277
valid objects for nicknames 16
valid server types 303

data type mappings
application programming

considerations 264
defining alternatives 101
description 18
for a specific data source

object 212
for a specific data source

type 214
for a specific server 211
for a specific server type and

version 215
forward 208

introduction 307, 323
modifying 208
pushdown analysis,

affecting 235
reverse 208

introduction 323
unsupported data types 208

data types
pushdown analysis,

affecting 239
unsupported 18
user-defined

enabling DB2 to
recognize 276

overview 276
strong typing 276

data warehousing 34
DataJoiner, migrating from xv
DATALINK data type

unsupported 18
DB2 Command Center

configuring data sources 85
DB2 Connect

description 24
DB2 Control Center

configuring data sources 85

DB2 family
default wrapper name 12
valid objects for nicknames 16

DB2 family data sources
adding to a federated server 107
tuning configurations 115

DB2 for iSeries data sources
default forward data type

mappings 307
DB2 for OS/390 data sources

default reverse data type
mappings 323

DB2 for OS/400 data sources
default reverse data type

mappings 323
DB2 for VM data sources 323
DB2 for z/OS and OS/390 data

sources
default forward type

mappings 307
DB2 Life Sciences Data Connect

description 24
DB2 Relational Connect

description 23
obtaining updates 83

DB2 Server for VM and VSE
default forward type

mappings 307
DB2 Universal Database

obtaining updates 83
DB2_DJ_COMM environment

variable
Microsoft SQL Server,

tuning 155
ODBC, tuning 165
Oracle, tuning 135
Sybase, tuning 145

DB2_FENCED wrapper option
description 196
valid settings 285

db2exfmt tool 241
DBNAME

valid settings 287
DELETE

remote evaluation 242
DISABLE function mapping

option 301
distributed requests

coding 268
optimizing 270

Documentum
valid objects for nicknames 16

DROP FUNCTION MAPPING
statement 275

348 DB2 Federated Systems Guide

DROP NICKNAME statement
examples 202
implications 202

DROP SERVER statement
examples 207
implications 207

DROP WRAPPER statement
examples 196
implications 196

E
explain tables

db2exfmt tool 241
description 241

F
federated databases

creating 82
description 7
preparing for data sources

overview 86
setting up 39

federated server
adding DB2 family data

sources 107
adding Informix data

sources 117
adding Microsoft SQL Server

data sources 147
adding ODBC data sources 159
adding OLE DB data

sources 167
adding Oracle data sources 127
adding Sybase data sources 137
description 3
setting up 39, 44, 47, 50, 54, 57,

62, 65, 67, 68, 75, 80, 81, 82, 85
tuning 115, 125
tuning Microsoft SQL Server

configuration 155
tuning ODBC configuration 165
tuning Oracle configuration 135
tuning Sybase configuration 145

federated system
data warehousing 34

federated systems
benefits 31
CREATE FEDERATED VIEW

statement 182
CREATE NICKNAME

statement 180
DELETE statement 193
description 3
distributed requests 268
INSERT statement 191

federated systems (continued)
related websites 335
replication 31
SELECT statement 188
SET PASSTHRU command 181
setup procedure overview 26
spatial analysis 32
transaction support 183
UPDATE statement 192
working with nicknames 175

federated views
accessing heterogeneous

data 182
creating 261

FOLD_ID
valid settings 287

FOLD_PW
valid settings 287

forward type mappings
description 307
syntax 208

function mapping options
alternative mapping 103
description 22, 103
DISABLE

valid settings 301
function overhead 273
INITIAL_INSTS

valid settings 301
INITIAL_IOS

valid settings 301
INSTS_PER_ARGBYTE

valid settings 301
INSTS_PER_INVOC

valid settings 301
IOS_PER_ARGBYTE

valid settings 301
IOS_PER_INVOC

valid settings 301
PERCENT_ARGBYTES

valid settings 301
REMOTE_NAME

valid settings 301
function mappings

CREATE FUNCTION MAPPING
statement 271

creating 223
defining alternative forms 103
description 20, 103
dicontinuing 275
DROP FUNCTION MAPPING

statement 275
function templates 271
optimizing 273

function mappings (continued)
pushdown analysis,

affecting 235
function templates

description 20
examples 223

functions
user-defined

accessing 271

G
generic data sources 307, 323
global catalog

description 7
global optimization

nickname characteristics,
affecting 249

overview 246
server characteristics,

affecting 247
GRANT statement

nicknames 257
GROUP BY operator

remote evaluation, global
optimization 253

remote evaluation, pushdown
analysis 242

I
IFILE

valid settings 287
IGNORE_UDT

valid settings 287
index specifications

creating 216
description 22
for views 219
global optimization,

affecting 249
on Informix synonyms 221
overview 99
when tables acquire new

indexes 218
Informix

data sources
adding to a federated

server 117
tuning configurations 125

default forward type
mappings 307

default wrapper name 12
valid objects for nicknames 16

INITIAL_INSTS
valid settings for function

mapping option 301

Index 349

INITIAL_IOS
valid settings for function

mapping option 301
INSERT

remote evaluation 242
INSTS_PER_ARGBYTE

valid settings for function
mapping option 301

INSTS_PER_INVOC
valid settings for function

mapping option 301
IO_RATIO

global optimization,
affecting 247

valid settings 287
IOS_PER_ARGBYTE

valid settings for function
mapping option 301

IOS_PER_INVOC
valid settings for function

mapping option 301
isolation levels 263
IUD_APP_SVPT_ENFORCE

valid settings 287

J
joins

remote evaluation 253

L
large objects (LOBs)

LOB handles 266
Life Sciences Data Connect

description 24
using with DB2 Relational

Connect 26
Web site 335

LOB (large object) data types
mapping between LOB and

non-LOB data types 267
Oracle data sources 265
restrictions 267

LOB handles 266
local

catalog information 7
data types 208
objects 96

local data type 264
LOGIN_TIMEOUT

valid settings 287
LONG VARCHAR data type

unsupported 18
LONG VARGRAPHIC data type

unsupported 18

M
Microsoft SQL Server

data sources
adding to a federated

server 147
default forward type

mappings 307, 323
tuning configuration 155

Migrating from DataJoiner xv
modifying

nicknames 198
server definitions 203
wrappers 195

N
nicknames

creating overview 96
defining column options 260
description 16
dropping 202
modifying 198
on nicknames 96
on summary tables 96
referencing in SQL

statements 256
using in SQL statements 175,

176
valid data source objects 16

NODE
valid settings 287

nodes
description 91

nonrelational data sources
data type mappings,

specifying 18
NUMERIC_STRING

column option
tuning 239
valid settings 299

O
ODBC (open database connectivity)

data sources
adding to a federated

server 159
tuning configuration 165

traces
Microsoft SQL Server data

sources 155
ODBC data sources 165

valid objects for nicknames 16
OLE DB

data sources
adding to a federated

server 167

OLE DB (continued)
data sources (continued)

registering a user-defined
OLE DB external table
function 170

default wrapper name 12
optimization

distributed requests 270, 273
server characteristics,

affecting 247
optimizer

description 8
fixed-cost model 246

Oracle data sources
adding to a federated server 127
default forward type

mappings 323
default wrapper names 12
LOB operations 265
NET8

default forward type
mappings 307

SQLNET
default forward type

mappings 307
tuning configuration 135
updating the hosts file 135
valid objects for nicknames 16

ORDER BY operator, remote
evaluation 242

P
page 287
pass-through

COMMIT statement 277, 278
considerations, restrictions 278
description 11
restrictions 11
SET PASSTHRU RESET

statement 278
SET PASSTHRU statement 278
SQL processing 277

PASSWORD
valid settings 287

PERCENT_ARGBYTES function
mapping option 301

performance
catalog statistics 249
collating sequence 247
communication rate 247
CPU speed 247
I/O speed 247
index specifications 249
remote plan hints 247

plan hints 247

350 DB2 Federated Systems Guide

PLAN_HINTS
global optimization,

affecting 247
valid settings 287

predicates
remote evaluation 242

PUSHDOWN
valid settings 287

pushdown analysis
description 8, 233
nickname characteristics,

affecting 239
query characteristics,

affecting 241
server characteristics,

affecting 235

Q
queries

data sources
multiple remote 188
single 188

fragments 8
joining local and remote data

sources 188
using pass-through 277

query optimization
description 8

R
Relational Connect

description 23
Web site 335

remote
catalog information 7
data type 264
data types 208
evaluation

access plans 242
discrepancies between 253
join 253

objects 96
SQL generation 246
tables, creating 226

REMOTE_AUTHID user option 297
REMOTE_DOMAIN user

option 297
REMOTE_NAME function mapping

option 301
REMOTE_PASSWORD user

option 297
replication

federated system 31
reverse type mappings

introduction 323

reverse type mappings (continued)
syntax 208

S
server options

COLLATING_SEQUENCE 235,
287

COMM_RATE 287
CONNECTSTRING 287
CPU_RATIO 287
DBNAME 287
description 14, 91
examples 204
FOLD_ID 287
FOLD_PW 287
global optimization,

affecting 247
IFILE 287
IGNORE_UDT 287
IO_RATIO 287
IUD_APP_SVPT_

ENFORCE 287
LOGIN_TIMEOUT 287
NODE 287
optimizing distributed

requests 270
PACKET_SIZE 287
PASSWORD 287
PLAN_HINTS 287
PUSHDOWN 287
pushdown analysis,

affecting 235
temporary 14
TIMEOUT 287
VARCHAR_NO_TRAILING_

BLANKS 235, 287
server types, valid data source

types 303
servers

creating 91
description 14
dropping 207
modifying 203

set operators
remote evaluation 242

SET PASSTHRU statement
considerations 278

SET SERVER OPTION statement
optimizing distributed

requests 270
setting an option temporarily 14

spatial data
analysis 32

SQL compiler
flowchart of query analysis 231

SQL dialect
description 9
pushdown analysis,

affecting 235
SQL Explain

access plan strategy,
viewing 241

SQL Server
default wrapper names 12
See Microsoft SQL Server data

sources 147
valid objects for nicknames 16

stored procedures
nicknames 260

strong typing 276
summary tables

creating nicknames 96
Sybase

data sources 16
adding to federated

serverx 137
CTLIB versus DBLIB 145
default forward type

mappings 307, 323
sp_helpindex error 145
tuning configuration 145

default wrapper names 12
synonyms

creating Informix index
specifications 221

SYSCAT catalog views
SYSCAT.

FUNCMAPOPTIONS 281
SYSCAT.

REVTYPEMAPPINGS 281
SYSCAT.COLOPTIONS 281
SYSCAT.COLUMNS 258, 281
SYSCAT.DATATYPES 281
SYSCAT.DBAUTH 281
SYSCAT.FUNCMAPPINGS 281
SYSCAT.FUNCTIONS 281
SYSCAT.INDEXES 258, 281
SYSCAT.SERVEROPTIONS 281
SYSCAT.SERVERS 281
SYSCAT.TABLES 281
SYSCAT.TABLES catalog

view 258
SYSCAT.TYPEMAPPINGS 281
SYSCAT.USEROPTIONS 281
SYSCAT.VIEWS 281
SYSCAT.WRAPOPTIONS 281
SYSCAT.WRAPPERS 281

SYSCAT.FUNCMAPOPTIONS 273
SYSSTAT.COLUMNS 281
SYSSTAT.FUNCTIONS 273, 281

Index 351

SYSSTAT.INDEXES 281
SYSSTAT.TABLES 281

T
table-structured files

valid objects for nicknames 16
TIMEOUT

valid settings 287
transaction support

application save points 183
INSERT, UPDATE, and DELETE

privileges 183
LOBs 183
referential integrity 183
restrictions 183
single-site updates and two-phase

commit 183
triggers 183

transparent DDL
creating remote tabless 226
data type mapping 208

tuning
data source configuration

ODBC 165
Oracle 135
Sybase 145

Microsoft SQL Server data source
configuration 155

query processing 231

U
UDTs (user-defined types)

unsupported 18
UPDATE statement

remote evaluation 242
user mapping

creating 94
description 15
testing the connection to the data

source 94
user options

ACCOUNTING_STRING 297
description 15
REMOTE_AUTHID 297
REMOTE_DOMAIN 297
REMOTE_PASSWORD 297

user-defined functions (UDFs)
accessing 271

user-defined types (UDTs)
enabling federated to

recognize 276
overview 276
strong typing 276
unsupported data types 18

user-definted OLE DB external table
function 170

V
VARCHAR_NO_TRAILING_

BLANKS
column option

tuning 239
valid settings 299

server option
tuning 235
valid settings 287

Visual Explain
db2exfmt tool 241

W
Web sites 335
What’s New xv
wrappers

altering 196
default names 12
description 12
dropping 196
modifying 195
options

DB2_FENCED 285
examples 196

registration 88

X
XML

nicknames, valid objects for 16

352 DB2 Federated Systems Guide

Contacting IBM

In the United States, call one of the following numbers to contact IBM:
v 1-800-237-5511 for customer service
v 1-888-426-4343 to learn about available service options
v 1-800-IBM-4YOU (426-4968) for DB2 marketing and sales

In Canada, call one of the following numbers to contact IBM:
v 1-800-IBM-SERV (1-800-426-7378) for customer service
v 1-800-465-9600 to learn about available service options
v 1-800-IBM-4YOU (1-800-426-4968) for DB2 marketing and sales

To locate an IBM office in your country or region, check IBM’s Directory of
Worldwide Contacts on the web at www.ibm.com/planetwide

Product information

Information regarding DB2 Universal Database products is available by
telephone or by the World Wide Web at
www.ibm.com/software/data/db2/udb

This site contains the latest information on the technical library, ordering
books, client downloads, newsgroups, FixPaks, news, and links to web
resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the
IBM Worldwide page at www.ibm.com/planetwide

© Copyright IBM Corp. 1998 - 2002 353

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

����

Part Number: CT16ENA

Printed in U.S.A.

GC27-1224-00

(1
P)

P/
N:

CT
16
EN
A

Spine information:

��� IBM
®

DB2 Universal Database
™ DB2 Federated Systems Guide Version 8

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Conventions and terminology used in this book
	Prerequisite and related information
	How to send your comments
	What's new about federated systems in DB2 Version 8?

	Part 1. Introduction to federated systems and concepts
	Chapter 1. Overview of a federated system
	Federated systems
	Data sources
	The federated database
	The SQL Compiler and the query optimizer
	Compensation
	Pass-through sessions
	Wrappers and wrapper modules
	Server definitions and server options
	User mappings and user options
	Nicknames and data source objects
	Column options
	Data type mappings
	Function mappings and function templates
	Function mappings options
	Index specifications
	DB2 Relational Connect
	About the other IBM Connect products
	DB2 Relational Connect and the other Connect products
	What is DB2 Connect?
	What is DB2 Life Sciences Data Connect?
	What is Classic Connect?

	Using Life Sciences Data Connect with DB2 Relational Connect

	Overview of the tasks to set up a federated system
	How you interact with a federated system
	DB2 command line processor (CLP)
	DB2 Command Center
	DB2 Control Center
	Application programs

	Chapter 2. Business Solutions with federated systems
	Leverage the federated functionality to solve your business needs
	Replication with a federated system
	Spatial analysis with a federated system
	Retail site selection
	Insurance risk assessment
	Targeted marketing campaigns
	Using DB2 Spatial Extender with a federated system

	Data warehousing with a federated system

	Part 2. Planning, setting up, and configuring a federated system
	Chapter 3. Setting up the federated server and database
	Fast track to setting up your server and database
	Setting up the server to access DB2 family data sources
	Setting up the server to access Informix data sources
	Setting up the server to access Oracle data sources
	Setting up the server to access Sybase data sources
	Setting up the server to access Microsoft SQL Server data sources
	Setting up the server to access ODBC data sources
	Setting up the server to access OLE DB data sources
	Checking the federated server setup
	Checking the federated server setup—details
	Checking the data source environment variables
	Manually setting the Informix environment variables
	Manually setting the Oracle environment variables
	Manually setting the Sybase environment variables
	Manually setting the Microsoft SQL Server ODBC driver environment variables
	Applying the environment variables in a multi-partition instance configuration

	Confirming the link between DB2 and the data source client libraries (UNIX)
	Checking for the wrapper library files
	Checking the link-edit error message files
	Manually linking DB2 to the data source client libraries

	Checking the wrapper library file permissions (UNIX)
	Checking the FEDERATED parameter

	Creating the federated database
	Obtaining updates for DB2 and Relational Connect

	Chapter 4. Overview of configuring access to data sources
	Fast track to configuring your data sources
	Prepare the federated database
	Create the wrapper
	Supply the server definition
	Additional server options

	Create the user mappings and test the connection to the data source
	Create nicknames for each data source object
	Including column options when you create a nickname
	Creating a nickname on a nickname

	Optional configuration steps
	About optional configuration steps
	Specify data source object indexes
	Define alternative data type mappings to the federated database
	Define alternative function mappings to the federated database

	Troubleshoot the data source configuration

	Chapter 5. Configuring access to DB2 family data sources
	Adding DB2 family data sources to a federated server
	Step 1: Catalog a node entry in the federated node directory
	Step 2: Catalog the remote database in the federated system database directory
	Step 3: Create the wrapper
	Step 4: Create the server definition
	Optional: Set additional server options

	Step 5: Create the user mappings
	Step 6: Test the connection to the data source server
	Step 7: Create the nicknames for the tables and views

	Tuning and troubleshooting the configuration to DB2 family data sources
	Improving performance by setting the DB2_DJ_COMM environment variable (UNIX)

	Chapter 6. Configuring access to Informix data sources
	Adding Informix data sources to a federated server
	Step 1: Set up and test the client configuration file
	Setting a different location for the sqlhosts file or registry

	Step 2: Create the wrapper
	Step 3: Create the server definition
	Locating the node name
	Optional: Set additional server options

	Step 4: Create the user mappings
	Step 5: Test the connection to the Informix server
	Step 6: Create the nicknames for tables, views, and synonyms

	Tuning and troubleshooting the configuration to Informix
	Improving performance by setting the FOLD_ID and FOLD_PW server options
	Improving performance by setting the DB2_DJ_COMM environment variable (UNIX)

	Chapter 7. Configuring access to Oracle data sources
	Adding Oracle data sources to a federated server
	Step 1: Set up and test a client configuration file
	Setting a different location for the tnsnames.ora file

	Step 2: Create the wrapper
	Step 3: Create the server definition
	Locating the node name
	Optional: Set additional server options

	Step 4: Create the user mappings
	Step 5: Test the connection to the Oracle server
	Step 6: Create the nicknames for tables and views

	Tuning and troubleshooting the configuration to Oracle data sources
	Improving performance by setting the DB2_DJ_COMM environment variable (UNIX)
	Connectivity problems

	Chapter 8. Configuring access to Sybase data sources
	Adding Sybase data sources to a federated server
	Step 1: Set up and test the client configuration file
	Step 2: Create the wrapper
	Step 3: Create the server definition
	Locating the node name
	Optional: Set additional server options

	Step 4: Create the user mappings
	Step 5: Test the connection to the Sybase server
	Step 6: Create the nicknames for tables and views

	Tuning and troubleshooting the configuration to Sybase data sources
	Improving performance by setting the DB2_DJ_COMM environment variable (UNIX)
	Using CTLIB instead of DBLIB
	Resolving the sp_helpindex error

	Chapter 9. Configuring access to Microsoft SQL Server data sources
	Adding Microsoft SQL Server data sources to a federated server
	Step 1: Prepare the federated server and database
	Step 2: Create the wrapper
	Step 3: Create the server definition
	Locating the node name
	Optional: Set additional server options

	Step 4: Create the user mappings
	Step 5: Test the connection to the Microsoft SQL Server remote server
	Step 6: Create the nicknames for tables and views

	Tuning and troubleshooting the configuration to Microsoft SQL Server data sources
	Improving performance by setting the DB2_DJ_COMM environment variable (UNIX)
	Obtaining ODBC traces

	Chapter 10. Configuring access to ODBC data sources
	Adding ODBC sources to a federated server
	Step 1: Prepare the federated server and database
	Step 2: Create the wrapper
	Step 3: Create the server definition
	Step 4: Create the user mappings
	Step 5: Test the connection to the ODBC data source
	Step 6: Create the nicknames for tables and views

	Tuning and troubleshooting the configuration to ODBC data sources
	Improving performance by setting the DB2_DJ_COMM environment variable
	Obtaining ODBC traces

	Chapter 11. Configuring access to OLE DB data sources
	Adding OLE DB data sources to a federated server
	Step 1: Create the wrapper
	Step 2: Create the server definition
	Step 3: Create the user mappings

	Registering a user-defined OLE DB external table function

	Part 3. Using, administering, and programming the federated system
	Chapter 12. Working with the federated system
	Working with nicknames
	Working with nicknames—details
	The SQL statements you can use with nicknames
	Accessing new data source objects
	Accessing data sources using PASSTHRU
	Accessing heterogeneous data through federated views

	Transaction support in a federated system
	Selecting data in a federated system
	Modifying data in a federated system
	Inserting data into data source objects
	Updating data in data source objects
	Deleting data from data source objects

	Chapter 13. Modifying the federated system
	Modifying wrappers
	Modifying wrappers-details
	Altering a wrapper
	Dropping a wrapper

	Modifying nicknames
	Modifying nicknames-details
	Altering a nickname
	Altering nickname column names
	Altering nickname column data type mappings
	Altering nickname column options

	Dropping a nickname

	Modifying server definitions
	Modifying server definitions-details
	Altering server definitions
	Modifying the definition of a specific data source
	Modifying the definition of a specific type or version of data source
	Changing the server configuration through server options

	Dropping a server definition

	Modifying default data type mappings
	Modifying default data type mappings-details
	Change a type mapping for all data source objects located on a specific server
	Change a type mapping for a specific data source object
	Change a type mapping for a specific data source type
	Change a type mapping for a specific data source type and version

	Creating index specifications for data source objects
	Creating index specifications for data source objects-details
	Creating index specifications on tables that acquire new indexes
	Creating index specifications on views
	Creating index specifications on Informix synonyms

	Creating and modifying function mappings
	Creating and modifying remote tables using transparent DDL
	Creating new remote tables using transparent DDL
	Altering remote tables that were created transparent DDL
	Dropping remote tables that were created transparent DDL

	Chapter 14. Tuning and performance issues with a federated system
	Tuning query processing
	Pushdown analysis
	Pushdown analysis-details
	Server characteristics affecting pushdown opportunities
	SQL differences
	Collating sequence
	Federated server options
	Type and function mapping factors

	Nickname characteristics affecting pushdown opportunities
	Local data type of a nickname column
	Federated column options

	Query characteristics affecting pushdown opportunities

	Pushdown analysis decisions
	Analyzing where a query is evaluated
	Understanding access plan evalutation decisions
	Why isn't this predicate being evaluated remotely?
	Why isn't the GROUP BY operator evaluated remotely?
	Why isn't the SET operator evaluated remotely?
	Why isn't the ORDER BY operation evaluated remotely?
	Why is a remote INSERT with a fullselect statement not completely evaluated remotely?
	Why is a remote INSERT with VALUES clause statement not completely evaluated remotely?
	Why is a remote, searched UPDATE statement not completely evaluated remotely?
	Why is a positioned UPDATE statement not completely evaluated remotely?
	Why is a remote, searched DELETE statement not completely evaluated remotely?

	Data source upgrades and customization

	Global optimization
	Global optimization-details
	Server characteristics affecting global optimization
	Relative ratio of CPU speed
	Relative ratio of I/O speed
	Communication rate between the federated server and the data source
	Data source collating sequence
	Remote plan hints

	Nickname characteristics affecting global optimization
	Index specifications
	Global catalog statistics

	Global optimization decisions
	Analyzing global optimization
	Understanding access plan optimization decisions
	Why isn't a join between two nicknames of the same data source being evaluated remotely?
	Why isn't the GROUP BY operator being evaluated remotely?
	Why is the statement not being completely evaluated remotely?
	Why does a plan generated by the optimizer and completely evaluated remotely, have much worse performance than the original query executed directly at the remote data source?

	Chapter 15. Application programming issues for federated systems
	How client applications interact with data sources
	Working with nicknames in your applications
	Referencing data source objects by nicknames in SQL statements
	Performing operations on data source objects
	Cataloging information about data source objects
	Invoking stored procedure nicknames
	Defining column options on nicknames
	Numeric_string column option
	Varchar_no_trailing_blanks column option

	Creating and using federated views
	Using isolation levels to maintain data integrity
	Overriding the default data type mappings
	Federated LOB support
	Federated LOB support—details
	How applications can use LOB locators
	Restrictions on LOBs
	Mappings between LOB and non-LOB data types

	Using distributed requests to query data sources
	Using server options to optimize distributed requests
	Invoking user-defined functions in applications
	Invoking user-defined functions in applications—details
	Enabling the federated database to access functions at data source
	Specifying function overhead through mapping options
	Specifying function names in a function mapping
	Discontinuing function mappings

	Enabling the federated database to recognize data source user-defined data types (UDTs)
	Using pass-though sessions within applications
	Using pass-through to query data sources directly
	Pass-though considerations and restrictions
	Using pass-through with Oracle data sources

	Appendix A. Views in the global catalog table containing federated information
	Appendix B. Wrapper options for federated systems
	Appendix C. Server options for federated systems
	Appendix D. User options for federated systems
	Appendix E. Column options for federated systems
	Appendix F. Function mapping options for federated systems
	Appendix G. Valid server types in SQL statements
	CTLIB wrapper
	DBLIB wrapper
	DJXMSSQL3 wrapper
	DRDA wrapper
	Informix wrapper
	MSSQLODBC3 wrapper
	NET8 wrapper
	ODBC wrapper
	OLE DB wrapper
	SQLNET wrapper

	Appendix H. Default forward data type mappings
	DB2 for z/OS and OS/390 data sources
	DB2 for iSeries data sources
	DB2 Server for VM and VSE data sources
	DB2 for UNIX and Windows data sources
	Informix data sources
	Oracle SQLNET data sources
	Oracle NET8 data sources
	Microsoft SQL Server data sources
	ODBC data sources
	Sybase data sources

	Appendix I. Default reverse data type mappings
	DB2 for z/OS and OS/390 data sources
	DB2 for iSeries data sources
	DB2 Server for VM and VSE data sources
	DB2 for UNIX and Windows data sources
	Informix data sources
	Oracle SQLNET data sources
	Oracle NET8 data sources
	Microsoft SQL Server data sources
	Sybase data sources

	Appendix J. Quick reference - useful Internet Web sites
	Glossary
	Glossary terms for federated systems

	Notices
	Trademarks

	Index
	Contacting IBM
	Product information

